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A B S T R AC T

The objective of this thesis is to make it easier to understand, use, and deploy strong
anonymization practices. We make progress towards this goal in three ways.

First, we make it easier to understand what anonymization means, and lower the cost
of entry for new practitioners. After a historical tour of a number of possible definitions,
we introduce differential privacy, a central concept studied throughout this thesis. We then
systematize and organize the existing literature on variants and extensions of differential
privacy: we categorize them in seven dimensions, compare them with each other, and list
some of their main properties.

Second, we consider a natural class of weaker variants of differential privacy: definitions
that assume that the attacker only has partial knowledge over the original data. We raise some
fundamental issues with existing definitions, and we establish strong theoretical foundations
to solve these issues and clearly delineate between distinct attack models. We use these
foundations to improve existing results on the privacy of common aggregations and draw
links between our notions and older syntactic definitions of privacy. Then, we provide strong
negative results for cardinality estimators, a class of algorithms that cannot be made private
even under very weak assumptions.

Third, we focus on practical applications. We present novel algorithms to detect reidentifi-
ability and joinability risks of large datasets, and we describe the design of a differentially
private query engine designed to be usable to non-experts. We propose multiple possible
improvements to this query engine, and discuss a number of trade-offs between privacy, utility,
usability, and extensibility; we then discuss operational challenges arising when rolling out
anonymization at scale, from choosing parameters to providing appropriate education and
guidance to engineers working on anonymization pipelines.
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R É S U M É

Le but de cette thèse est de simplifier
L’art d’empêcher que l’on puisse identifier
Un seul individu dans un jeu de données
Même si l’on se sert de voies insoupçonnées.

Définir ce problème est loin d’être évident :
Bon nombre d’érudits s’y sont cassé la dent.
D’abord, on retranscrit le parcours historique
Ayant déterminé la notion unique
Utilisée ici pour définition
Grâce à ses attributs et son intuition.
Nous classons et trions toutes ses variantes
En sept dimensions dociles et brillantes.

On s’attarde plus tard sur un point compliqué :
Comment modéliser l’attaquant étriqué
Ayant a priori bien trop d’incertitude
Pour accomplir son rôle avec exactitude.
Grâce à des fondements que l’on rend adéquats
Nous améliorons d’anciens résultats.
Certains sont positifs : on peut enfin comprendre
Comment voter pour l’une et pour autant prétendre
Avoir voté pour l’autre, en restant clandestins.
Certains sont négatifs : en comptant les distincts
Alors on doit choisir ; soit on passe à l’échelle,
Soit on protège bien chaque info personnelle.

Les principes, c’est bien, les actions, c’est mieux.
C’est pourquoi l’on poursuit un but audacieux :
Rendre l’anonymat accessible en pratique.
Un accord adéquat de sens mathématique
Et d’innovation technique est précieux
Pour accomplir un jour ce rêve ambitieux.
Et l’outil n’est pas tout : c’est aussi nécessaire
D’aider tout un chacun pour être l’émissaire
Du maintien et respect de principes moraux.
Chaque choix peut changer un quidam en héros.
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Z U S A M M E N FA S S U N G

Das Ziel dieser Doktorarbeit liegt in der Erleichterung des Verständnisses und der Verwen-
dung von starken Anonymisierungstechniken, sowie der Bereitstellung von Prozeduren zur
Anonymisierung. Hierbei erzielen wir auf drei verschiedene Arten Fortschritte.

Zuerst beleuchten wir die Grundlagen von Anonymisierung, um Neulingen einen ein-
facheren Zugang zum Fachgebiet zu ermöglichen. Nach einem geschichtlichen Überblick
über ausgewählte andere Datenschutzdefinitionen wird Differential Privacy eingeführt, ein
zentrales Konzept dieser Doktorarbeit. Der anschließende Schwerpunkt liegt auf der Systema-
tisierung und Organisierung der wissenschaftlichen Literatur zu Varianten und Erweiterungen
von Differential Privacy. Wir kategorisieren die vorhandenen Definitionsvarianten in sieben
Dimensionen, vergleichen sie miteinander und führen einige ihrer Haupteigenschaften auf.

Als Zweites überprüfen wir natürliche Verallgemeinerungen der Differential Privacy: Defi-
nitionen, die einen Angreifer mit nur teilweiser Kenntnis der Originaldaten annehmen. Wir
zeigen grundsätzliche Probleme bei diesen Definitionen auf und etablieren starke theoretische
Grundlagen zur Lösung diese Schwierigkeiten. Hierbei ist unsere deutliche Abgrenzung
zwischen zwei unterschiedlichen Angreifermodellen hervorzuheben. Wir nutzen diese Grund-
lagen, um bestehende Ergebnisse über verbreiteter Aggregationen zu verbessern, und um Ver-
bindungen zwischen unseren Anonymisierungsegriffen und älteren syntaktischen Definitionen
zu ziehen. Darauf aufbauend legen wir starke negative Ergebnisse für Kardinalitätsschätzer
vor: Diese Klasse von Algorithmen wird selbst unter schwächsten Annahmen nicht dem
Privatsphärenschutz gerecht.

Als Drittes betrachten wir praktische Anwendungen. Wir präsentieren neuartige Algo-
rithmen zur Ermittlung von Informationszusammenführungs- und Identifizierungsrisiken
in großen Datenmengen. Außerdem beschreiben wir den Entwurf eines Systems, welches
Laien erlaubt, statistische Abfragen unter Wahrung der Differential Privacy auszuführen.
Wir schlagen mehrere mögliche Verbesserungen für dieses System vor und besprechen eine
Reihe von Kompromissen zwischen Datenschutz, Genauigkeit, Benutzerfreundlichkeit und
Erweiterbarkeit; wir betrachten auch die Herausforderungen bei anonymisierten Datenver-
öffentlichungen von der Auswahl adäquater Datenschutzparameter bis zur angemessenen
Schulung und Anleitung von EntwicklerInnen, die an Anonymisierungspipelines arbeiten.
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Ugh, emotions.

— Martha Wells, Network Effect
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N OTAT I O N S

mathematical notations

N The set of nonnegative integers

Z The set of integers

R The set of real numbers

|E| Cardinality of set E

E \ F Set difference of set E and set F

E × F Cartesian product between set E and set F

P [A] Probability of event A

P [A, B] Probability of the conjunction of event A and event B

θ A probability distribution (or θ1, θ2, . . . ).

PX∼θ [A(X)] Probability of event A(X), when X is sampled from θ

P [A | B] Probability of event A, conditioned on event B

E [L] Expected value of random variable L

EX∼θ [L(X)] Expected value of L(X), when X is sampled from θ

θ|B Probability distribution θ conditioned on event B

A(X)|X∼θ,B(X) Random variable A(X), when X is sampled from θ|B(x)

f : E → F Function, possibly probabilistic, from set E to set F

notations for datasets and records

T Set of possible records

t ∈ T A record (or t1, t2, . . . )

D = T ∗ Set of possible datasets (sequences of records)

D ∈ D A dataset (or D1, D2, D̂, . . . )

|D| ∈N The number of records in dataset D (typically denoted n)

D(i) The i-th record of dataset D (i ≤ |D|)

D−i Dataset D with its i-th record removed

Some of these notations are slightly modified when we introduce the concept of record
ownership in Chapter 4, see the “Datasets with user identifiers” notation table on page xix.
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xviii notations

differential privacy and its variants

O Set of possible outputs of a privacy mechanism

O ∈ O An output of the privacy mechanism

S ⊆ O A subset of outputs of a privacy mechanism

M : D → O A privacy mechanism

≈ε ε-indistinguishability (see Definition 5)

≈ε,δ (ε, δ)-indistinguishability (see Definition 14)

LM(D1)/M(D2) Privacy loss random variable (PLRV) betweenM (D1) andM (D2),
often abbreviated LD1/D2 (see Definition 13)

B Set of possible partial knowledges

B ∈ B A value of the partial knowledge (or B1, B2, B̂, . . . )

Θ Family of probability distributions onD orD×B

θ ∈ Θ A probability distribution onD orD×B, also used as an abbreviation
for D ∼ θ or (D, B) ∼ θ, e.g. in Pθ [. . .] orM (D)|θ

π A probability distribution on T

D̂ A specific dataset, also used as an abbreviation for the event D = D̂

B̂ A specific value of the partial knowledge, also used as an abbreviation
for the event B = B̂

Sim A function fromD to O called a simulator (see Definition 50)

Di→t′ Dataset D with its i-th record replaced by b ∈ T

θ̂ A normalization of a distribution θ (see Definition 53)

φ0, φ1, . . . Parameters of a normalization θ̂ (see Definition 53)

L
M,θ
i←t/i←t′ (O, B̂) Privacy loss random variable (PLRV) of an output O given partial

knowledge B̂, when distinguishing between D(i) = t or D(i) = t′

(see Definition 56)

m (O, B) Abbreviation for max
(
0, 1 − eε−L

M,θ
i←t/i←t′ (O,B)

)
APKi,t,t′,B̂ Abbreviation for E

θ|D(i)=t,B̂,O∼M(D)

[
m

(
O, B̂

)]
PPKi,t,t′ Abbreviation for E

θ|D(i)=a,O∼M(D)
[m (O, B)]

ϕi
B1,B2

Bijective mapping between B1 and B2 for record i (see Definition 59)

DepM1,M2,θ
i,t,t′ Dependency of M2 on M1 to distinguish D(i) = t and D(i) = t′

(see Definition 62)



notations xix

cardinality estimators

E ⊆ T A set of records (or E1, E2, . . . )

S Set of possible sketches

S ∈ S A sketch (or S ′, S 1, S 2, . . . )

S Set of probability distributions over S

σ ∈ S A probability distribution over sketches (or σ′)

S∅ ∈ S The empty sketch

add (t, S ) Sketch, or distribution of sketches, obtained by adding record t to a
sketch S

estimate (S ) Estimated number of distinct records added to a sketch S

S E ∈ S Sketch obtained by adding all records of set E into S∅
σE ∈ S Distribution of sketches obtained by adding all records of set E into S∅
merge (S , S ′) Sketch obtained by merging sketches S and S ′

merge (σ,σ′) Distribution of sketches obtained by merging distributions of sketches σ
and σ′ (also denoted σ ·σ′)

Pn (T ) Set of subsets of T of cardinality n

Pn [A(E)] Probability of event A(E), when E is taken uniformly in Pn (T )

datasets with user identifiers

C A dataset column (or C1, C2, . . . )

c ∈ C The value of a column (or c1, c2, . . . )

ID Set of possible user identifiers

id A user identifier (or id1, id2, . . . )

ID [c j] The set of user identifiers associated with a column value

h A hash function

T = C1 × · · · × Ca Set of possible records, composed of multiple columns

(id, t) ∈ ID×T A row, associating a user identifier with a record

D A dataset, formally a multiset of rows

‖D1 − D2‖ Row-level distance between datasets D1 and D2 (see Definition 78)

‖D1 − D2‖u User-level distance between datasets D1 and D2 (see Definition 78)

f : D → Rd A vector-valued function

‖v‖1 L1 norm of vector v ∈ Rd

∆ f L1-sensitivity of function f (see Definition 80)

∆u f User-level L1-sensitivity of function f (see Definition 80)





1
I N T RO D U C T I O N

After all, a person is herself, and others. Relationships chisel
the final shape of one’s being. I am me, and you.

— N.K. Jemisin, The Fifth Season

Alice sends an email to her friends and family to organize her birthday party. Bob explains
his symptoms to his doctor, who takes notes on her computer. Camille requests directions to a
restaurant on their favorite navigation app. Dede puts on a fitness tracker and goes out for a
run around the neighborhood. Ember goes for a hike, and takes a few pictures of the view
from up the hill.

All these activities will generate a trail of data. Nowadays, few are the endeavors that
do not leave a digital trace on a person’s devices, or on some remote server farm. This
historically new phenomenon appeared and drastically expanded over the last few decades.
Before that, only a few large industries and governments were automating computing and
data processing. What brought about this extensive change? Improvements in hardware? A
few core innovations, like the World Wide Web? Market forces?

Rather than looking for causes, one could look for incentives. Who benefits most from
the collection, processing, and sharing of this data? Technology companies like to argue that
their customers—or users—are the primary beneficiaries of their services. At first glance, the
argument appears reasonable: many Internet services are free, and people use them because
they find some value in them. Organizing one’s pictures, looking up information for a school
assignment, staying in touch with loved ones, watching TV shows at any time, are all examples
of benefits that people get by sharing their personal data with online services. Even people
who are otherwise reluctant to technological change can usually find parts of their lives to be
made easier or more convenient thanks to technological innovations of the 21st century.

Of course, despite what their founders like to pretend, tech companies are not providing
these services out of the goodness of their heart. Even if they did, building, running, and
maintaining large-scale online services is expensive. So what are tech companies getting out
of the exchange? How do they transform all the data they collect into profit? And how fair is
that exchange?

One of the common mechanisms to extract profit out of personal data is personalized
advertising. The massive scale and complexity of the online advertising industry is difficult
to grasp, but the basic principle of personalized ads is relatively simple. Consider a fitness
tracking app, in which users record their performance when sports training. A sportswear
company launching a new line of triathlon clothes might pay the app provider to advertise their
product to users who recently recorded their performance in running, cycling and swimming.

In this example, an individual user might find the exchange reasonable and fair. They get the
benefit of using the app for free, at the “cost” of seeing ads that are relevant to their interests.
The app company earns money for each impression—when an ad is shown to users—and
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2 introduction

conversion—when a user clicks on an ad and ends up buying the product. The company
revenue scales roughly linearly with the number of users: twice as many users translate to
twice as many impressions and conversions.

This individual view, however, is very narrow: it only considers each piece of personal data
in isolation. It neglects a crucial aspect: individual data has additional value in large quantities,
as large datasets are more than the sum of their parts. An app developer might collect data
to measure what features of their app are most popular among its users. Ad tech companies
can run experiments and measure which kind of ads are most likely to lead to profitable
conversions. Aggregate data can also be used to do market research, enabling marketers to
discover consumer trends early and act on them before their competitors.

Such analyses are only possible if data from sufficiently many people are included in
the dataset: the value of a dataset increases more than linearly with its size. This creates
feedback loops, especially with the recent advances in machine learning. The more training
data companies have, the better their machine learning models perform, and the more useful
their products become, which encourages more people to use them, which in turn increases
their data and revenue. In parallel, as their user base grows, their advertising business becomes
more efficient and profitable, giving a further advantage to large, established tech companies.

Seen under this lens, this phenomenon seems hardly fair. Why do individuals only get the
benefits from the processing of their individual data, while large companies profit from the
added, “compound” benefits of large datasets? Public relations departments of tech companies
typically have two answers to this objection.

First, they point out that data collection can help improve the product itself, which benefits
users. Examples abound. A search engine can get better over time, as its algorithm gets
updated to improve accuracy or user satisfaction metrics. Data collection from the users of a
navigation app enables more accurate traffic predictions, which in turns enables faster and
smarter routing. A music app can aggregate the data it collects to improve its recommendation
algorithm, which can help users discover their next favorite artist. To summarize the argument:
sometimes, the incentives of tech companies and of their users are aligned, in which case
large-scale data collection and processing can have an overall positive impact. Notice that this
does not answer the fairness objection. If a company uses my data for five distinct purposes,
and I only benefit from one of them, it is better than nothing, but the exchange still does not
seem very fair.

This leads to the tech industry’s second answer to this objection: the development of
initiatives focusing on using data “for good”. For instance, giving external researchers access
to data for scientific research, forecasting the spread of diseases, developing early warning
systems for natural disasters, etc. The idea behind these projects is to “give back” to the
community: using the compound benefits of aggregated data for a cause that serves everyone.
The scale of these efforts, however, is relatively small compared to other areas of business for
tech companies.

For some efforts—especially when they require building entire systems from scratch, like
early warning systems for earthquakes—this is not surprising. The incentives of a capitalist
system do not exactly encourage companies to spend more time on doing social good than on
pursuing their core business, or other profitable endeavors.
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Some other efforts, though, seem to require little effort, and can potentially lead to signifi-
cant positive outcomes for society and for the company’s public image. One major example
is sharing data with external researchers. At first glance, it seems like this practice benefits all
the actors involved. Academics get access to valuable data to study, allowing them to publish
papers in prestigious venues and boost their careers. Society benefits from scientific progress
brought about by this work. And the company can reap public image benefits for free: all the
hard analysis work, requiring valuable time and expertise, is outsourced to researchers. Even
better, the process improves relations with prominent academics, who are useful allies—key
opinion formers, in public relations jargon—to have when trying to influence regulators or
polish one’s media coverage.

So why is this kind of partnerships not more common? The main reason is risk. Sharing
data externally, even under non-disclosure agreements and with some security measures in
place, increases the chances that it will be leaked to other third-parties, or used for unplanned
ill-intentioned purposes. The best example of this phenomenon might be the Cambridge
Analytica scandal. Aleksandr Kogan, who developed a Facebook app that collected the data
of millions of users, was a Cambridge researcher and a Facebook consultant. The collected
data was then used to target ads to individual voters and influence elections.

Concerns about privacy risks are therefore an understandable reason, as well as a convenient
excuse, for companies to avoid sharing data externally. One of the ways to solve this problem,
and re-align incentives, is anonymization. Anonymizing personal data means altering it to
minimize or eliminate some of the privacy risks it carries. Of course, anonymization alone
is pointless: redacting a dataset entirely is a very easy and effective way to remove all the
risk associated with it, but it would also destroy its value completely. The core challenge of
anonymization is thus to preserve some useful properties of data, while still limiting risk.
In the example above, where a company wants to share data with researchers, the goal is to
retain the statistical properties of the data that enable rigorous scientific analysis.

This is the fundamental challenge that this thesis focuses on. How to anonymize a dataset
in a way that provides strong privacy guarantees, while still preserving its usefulness? The
problems that this work investigates all derive from this core question. Which concepts and
techniques already exist in the scientific literature? What are their limitations and the main
obstacles to their adoption? And how can we best address them?

Today, anonymization is largely seen as something extremely complicated to achieve.
People might have heard of the numerous anonymization failures of the past 21st century, and
concluded that it is simply impossible to correctly anonymize data. Others might have heard
of more recent, stronger definitions of anonymity like differential privacy—a core concept
examined and used throughout this thesis—but dismiss it as purely theoretic, and too difficult
to be used in practice. The goal of this work is to dispel these misconceptions, and make it
easier and cheaper to safely anonymize data.

We start this ambitious goal in Chapter 2, by trying to determine what it means for data
to be sufficiently anonymized. This is not a simple endeavor, as more than 200 variants and
extensions of differential privacy have been introduced in the last decade. We systematize and
categorize these notions, to provide a unified and simplified view of this field (Section 2.2).
Then, in Chapter 3, we focus on one family of such variants: definitions that, in contrast to the
original formulation of differential privacy, assume that the attacker only has partial knowledge
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about the input dataset. We identify and solve definitional problems in existing variants
(Section 3.1), we present new and improved results on the privacy of common mechanisms
(Section 3.2), and we prove impossibility results for the important problem of cardinality
estimation (Section 3.3). Finally, in Chapter 4, we look at the main obstacles to the widespread
use of anonymization techniques for practical problems. We propose scalable sketching
algorithms for estimating reidentifiability and joinability risk (Section 4.1), as well as a
framework to implement differential privacy as part of a query engine (Section 4.2). We then
propose a number of possible improvements to such a system, and discuss some operational
challenges raised by the use of differential privacy in practical scenarios (Section 4.3).

personal contributions

Almost all this thesis is the result of work done in collaboration with other researchers,
engineers, and other colleagues. It was an utmost privilege to work with so many exceptional
people. Much of the credit goes to them, although I am solely responsible for all the mistakes
that might still be present. Large portions of this work have also been published in some other
form in other venues. This section gives more context on existing publications and gives
credit where credit is due.

The historical overview of syntactic definitions of privacy, and the introduction of differen-
tial privacy present in Section 2.1 merely presents existing work. They are based on a series
of blog posts published on my personal website [98].

The systematization of knowledge on variants and extensions of differential privacy exposed
in Section 2.2 was done in collaboration with Balazs Pejo. We contributed equally to this work,
whose short version was published as [102]. The long version is available on arXiv [101], and
is currently under review.

The exploration on differential privacy with partial knowledge presented in Sections 3.1
and 3.2 is the result of a collaboration with Elisabeth Krahmer and Esfandiar Mohammadi,
supervised by David Basin. I developed and wrote most of the original paper, but the core
insights behind the concept acceptable normalizations emerged from productive discussions
with Esfandiar, who also pushed for and came up with most of the composition results.
Elisabeth proved the results on Θ-reducibility, and implemented the experiments in these
sections; she and David also found critical flaws in initial versions of many results. The
corresponding paper is available on arXiv [100] and is currently under review.

The work on cardinality estimators presented in Section 3.3 and published in [99] was done
in collaboration with David Basin and Andreas Lochbihler. I defined the original problem,
which originated from a Google privacy review, came up with the core results, and wrote most
of the original paper. However, this could not have happened without Andreas and David, and
I am grateful for their patience and mentorship: the clear definition of the attacker model is
theirs, they found multiple critical flaws in earlier versions of the proofs, and I learned how
to write scientific papers thanks to the many rounds of reviews they performed on my initial
drafts.

The original design and implementation of KHyperLogLog is largely due to Pern Hui Chia.
The work written up in Section 4.1 is the result of a collaboration with Wei-Yen Day, Miguel
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Guevara, Chao Li, Milinda Perera, Daniel Simmons-Marengo, Qiushi Wang, and myself; it
was published as [76]. I contributed to the production implementation of the system, helped
with thorny design issues, re-implemented it in SQL, ran the experimental validation, and
published the experimental code as open-source software. I also helped write the paper and
convince various internal stakeholders that this was worth publishing.

The differentially private SQL engine from Section 4.2 was designed and built by Bryant
Gipson, William Lam, Daniel Simmons-Marengo, Royce J Wilson, and Celia Zhang; since
the publication of the corresponding paper as [388], many more people have contributed to it.
My personal contribution consists mostly in reviewing the design of various elements, and
turning the core engineering contribution into a scientific paper by framing the contributions,
organizing them into a coherent story, defining the experimental setup, and performing many
rounds of reviews.

The work on partition selection in Section 4.3.2 was done in collaboration with Bryant
Gipson and James Voss. I came up with the original insight, write-up and experiments, Bryant
did the initial math for the closed-form formula, and James implemented it and properly
wrote it up, fixing a number of subtle problems in the process.

I wrote the initial proof of concept of Privacy on Beam, mentioned in Section 4.3.3.1; Miraç
Vuslat Başaran, Christoph Dibak, and Maria Telyatnikova turned it into a production-grade,
open-source library, with contributions from Skye Berghel, Manushree Vijayvergiya, and
James Voss. Privacy on Beam is the Go version of a tool previously designed and implemented
in C++ by Kareem Amin, Jenny Gillenwater, Alex Kulesza, Andrés Muñoz Medina, and
Sergei Vassilvitski.





2
D E F I N I N G A N O N Y M I Z AT I O N

Embrace diversity.
Unite—
Or be divided,
robbed,
ruled,
killed
By those who see you as prey.
Embrace diversity
Or be destroyed.

— Octavia Butler, Parable of the Sower

The first step towards solving any problem is defining precisely what we are trying to
achieve. In the case of anonymization, this is a surprisingly difficult endeavor. Informally, the
objective is simple: anonymized data should not reveal sensitive information about individuals.
This informal goal is simple and intuitive, the difficulty is to convert it into a formal statement.

First, what kind of information counts as sensitive? Different people will have different
expectations and opinions about what they would prefer to keep private about themselves. In
some cases, there might be an obvious answer: for example, in a healthcare dataset, diagnostic
information is sensitive. But in many other examples, it is not so obvious. Information that
might seem benign to most people might reveal private facts about individuals: for example,
revealing one’s gender in an old dataset might out a transgender person to their colleagues.

One solution to this difficulty is to focus on the “about individuals” part of the informal
definition above. The reasoning goes as follows. If it is impossible to associate any information
with a specific individual, then that person is protected. Their anonymity is preserved.

Organizations, when communicating about how they use anonymization to protect people’s
privacy, typically focus on this aspect. The US Census Bureau states that it is “not permitted
to publicly release [one’s] responses in any way that could identify you” [199]; the relevant
statute specifies that it may not “make any publication whereby data furnished by any
particular [. . . ] individual [. . . ] can be identified” [313]. Similarly, some companies state that
anonymized data “cannot be associated with any one individual” [198].

Note the use of “could” or “can” in these definitions. They limit what can potentially be
inferred from the data. This is in stark contrast with the misleading claim, all too common
among companies and research organizations, that some data they publish is anonymized
because it does not immediately reveal people’s identities [93, 94, 331]: there is a large
difference between making reidentification vaguely non-trivial and making it impossible.
This misuse of terminology leads to the frequent misconception that anonymization is simply
impossible [59, 287].
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8 defining anonymization

So, how to formalize the impossibility of reidentifying individuals? Over the past few
decades, a large number of definitions has been proposed. These data privacy definitions fall
into two broad categories. The first approach is to try to define a criterion that applies to the
data itself. A dataset that passes this criterion is considered “anonymized enough”, and the
problem is then to explore the different ways to transform data so the end result satisfies the
criterion. In this chapter, we will introduce four such definitions, and explain the shortcomings
of each, and of this general approach.

A second possibility is to consider anonymization as a property of the process, rather
than its outputs. This is one of the core insights of differential privacy, a definition that
has encountered remarkable success since its introduction: a quick online search shows
that in 2020, more than 3000 scientific papers mentioning differential privacy have been
published. We will introduce this notion, explain what advantages it provides, and detail how
its guarantees can be interpreted.

This fundamental idea of a process-based definition of anonymization has proved very
fruitful. In the decade following the introduction of differential privacy, a large number of
variants and extensions of the original definition have been proposed. In the third and main
part of this chapter, we propose a taxonomy of these variants and extensions. We list all the
definitions based on differential privacy we could find in a systematic literature survey, and
partition them into seven categories, depending on which aspect of the original definition is
modified. We also establish a partial ordering of relative strength and expressibility between
all these notions. Furthermore, we list which of these definitions satisfy some of the same
desirable properties that differential privacy provides.

2.1 from syntactic to semantic privacy

Before differential privacy was introduced, a number of privacy researchers tried to find a
good definition for anonymized data, and develop algorithms to modify a dataset so it satisfies
a given definition. In this section, we list four of those definitions. We start with k-anonymity,
an influential notion that was the starting point for an active area of research. We then present
l-diversity, k-map, and δ-presence.

Although these definitions are no longer widely used in anonymization research, making a
short tour of these notions is valuable. Their differences help understanding the various types
of privacy risks from data releases, and natural approaches to mitigating these risks. Their
history illustrates the difficulty of coming up with a satisfying definition of anonymized data,
making it easier to appreciate the insights behind differential privacy. Finally, we will revisit
some of these notions in later chapters of this thesis, where we show that some of them can
still be relevant and useful.

Throughout this thesis, we denote byD the space of possible datasets. Each dataset D ∈ D
is a list of records with values in an arbitrary set T . We denote by n = |D| the number of
records in D. Unless specified otherwise, each individual in a dataset D is associated to a
single record. We number each individual 1, . . . , n, the corresponding record is denoted by
D(i). Typically, T can be the set of integers N, the set of real numbers R, some finite set of



2.1 from syntactic to semantic privacy 9

possible categories, the set of strings, or a combination of the above. These notations, and
others used in this section, are summarized on page xvii.

2.1.1 k-anonymity

In 1997, the Group Insurance Commission (GIC), a Massachusetts health insurance organi-
zation, compiled and published a database of hospital visits by state employees [355]. The
dataset was then shared widely with researchers, to encourage scientific research. Of course,
there were privacy considerations with publishing people’s health records: “in accordance
with the best de-identification practice of the time”, all directly identifying information was
removed: name, phone number, full address, social security number, etc.

As you can probably expect, this story does not end well. Some demographic information
was left in the database, to allow researchers to run statistical analyses: ZIP code, date of birth,
and gender were all part of the data. William Weld, then governor of Massachusetts, “assured
the public that GIC had protected patient privacy”. Latanya Sweeney, then a PhD student
at MIT, did a back-of-the-envelope calculation, and started suspecting that this apparently
innocuous information could be, in fact, very identifying. To prove her point, she decided to
try and reidentify Weld’s records from the “anonymized” database [14].

With just $20, Sweeney bought the public voter records from Massachusetts, which had
both full identifiers (names, addresses) and demographic data (ZIP code and date of birth),
and contained the governor’s information. Only one record in the hospital dataset matched
the governor’s demographic data, and thus, Sweeney was able to know which prescriptions
and visits in the data were his. She sent him that information by mail, showing theatrically
that their anonymization process was not as solid as it should have been.

Several factors made this attack possible.

1. The hospital data contained demographic information that could be used to distinguish
between different records.

2. A secondary database was available to figure out the demographic information about
the target.

3. The target was in both datasets.

4. And the demographic information of the target (ZIP code, date of birth, and gender)
was unique within both datasets: only one record had the demographic values of the
governor.

At first glance, all factors appear to be necessary for the attack to work. So, which ones can
we afford to remove, while making sure that the data can be used for data analysis tasks? Let
us go through all options.

1. We could remove all demographic information from the data, or even all information
that might be linked to a person using auxiliary sources. Unfortunately, this would also
severely hinder the utility of the data: correlations based on age, gender, and geographic
info are very useful to researchers!
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2. Society probably should do something about the existence of public (or commercially
available) data sources that can be used in reidentification attacks. For example, regu-
lations might outlaw the publication or sale of such datasets, making them harder to
come by. However, this is a complex issue, on which individual data owners have little
power.

3. Again, there is not much we can do about this aspect. We have no way to modify the
secondary (public) dataset. We could decrease the probability that a random target is in
our dataset by sub-sampling it, but all people in the sample would still be at risk.

4. The uniqueness of the governor’s demographic information is a central aspect of the
reidentification attack. Maybe, rather than suppressing all demographic values—which
would render the data useless—we could find a less drastic of making those less unique.

This last suggestion is the fundamental intuition behind k-anonymity: everyone must be
hidden in a crowd of at most k people. More precisely, each each combination of demographic
values must map to at least k different people. Of course, demographic information is not
the only type of data that can be used in such an attack. Any personal information that the
attacker knows about an individual can be used. Thus, the first step is to define a list of
quasi-identifiers: database columns that we assume the attacker knows. To that end, we model
the space of possible records as T = Q1 × · · · × Qa ×C1 × · · · Cb: each Qi is a quasi-identifier
(e.g. age or ZIP code), while Ci columns are assumed to be unknown by the attacker.

Definition 1 (k-anonymity [337, 354]). Assume T = Q1 × · · · ×Qa ×C1 × · · · Cb. A database
D is k-anonymous if for every possible combination of quasi-identifier values (q1, . . . , qa) ∈
Q1 × · · · × Qa, this combination is present in at least k records in the dataset, or in none.

For example, assuming that ZIP code and age are both quasi-identifiers, the dataset in
Table 2.1 is 2-anonymous, while the dataset in Table 2.2 is not.

ZIP code age

4217 34

4217 34

1742 77

1742 77

4217 34

Table 2.1: A 2-anonymous dataset.

Note that we need every combination of values to appear at least k Thus, even if each
individual value of each column appears 2 times in the dataset of Table 2.3, it is not 2-
anonymous either.

The intuition is that when a dataset is k-anonymous for a sufficiently large k, the last
requirement for a successful reidentification attack is broken. An attacker might find out the



2.1 from syntactic to semantic privacy 11

ZIP code age

4217 34

1742 77

1743 77

4217 34

Table 2.2: A dataset that is not 2-anonymous: ZIP code 1743 is unique.

ZIP code age

4217 34

1742 34

4217 77

1742 77

Table 2.3: A dataset that is not 2-anonymous: all combinations of ZIP code and age are unique.

demographic information of their target using a secondary database, but then this demographic
information will be linked to k different individuals, so it will be impossible to know which
one is their info. The privacy guarantee gets stronger with increasing k values: the larger k,
the bigger the crowd in which each individual is “hidden”.

2.1.1.1 Policy questions raised by k-anonymity

Using this definition in practice requires answering a number of questions. First, what types
of data are reidentifying? How should one decide which columns in a dataset are assumed to
be known by the attacker, and should be classified as quasi-identifiers? As we mentioned, ZIP
codes, age, or gender are all good candidates for reidentification attacks: they are public or
easily findable information that is also often found in sensitive datasets, especially medical
ones.

In general however, there is no universal criterion for what constitutes of quasi-identifier.
This choice depends on the attack model. Timestamps, medical conditions, physical charac-
teristics, behavioral information can all be considered potentially reidentifying in some cases.
In other cases, it can seem reasonable to assume that someone trying to attack a dataset would
not have easy access to these values.

The second question is about the choice of k. Which value is appropriate? Again, it is
difficult to say. In the healthcare world, when medical data is shared with a small number of
people (typically for research purposes), k is often chosen between 5 and 15 [137]. To the best
of our knowledge, there is no official law or regulation which suggests a specific value. Some
universities, companies or other organizations have official guidelines, but the vast majority
do not.
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This choice is difficult to make. To pick a principled value for k, we would need to un-
derstand what is the link between the parameter value, and the risk of a privacy incident
happening. But if k-anonymity is relatively easy to understand, estimating this risk quantita-
tively is not straightforward. It is difficult to measure how much more “privacy protection”
is offered by larger values of k. Furthermore, the level of risk depends on many additional
parameters: how valuable the data is, how bad would a privacy incident be, how many people
have access to the data, etc.

2.1.1.2 k-anonymity in practice

To use k-anonymity in practice, one has to decide how to modify the initial dataset to create a
k-anonymous version of it. Two basic techniques are typically used as building blocks for
more complex algorithms: generalization and suppression [246, 247, 338, 353].

Generalization is the process of making a quasi-identifier value less precise, so that records
with different values are transformed (or generalized) into records that share the same values.
Consider the records in Table 2.4.

ZIP code age

4217 34

4217 39

1742 75

1691 77

Table 2.4: A dataset prior to generalization

The numerical values of these records can be transformed into numerical ranges, so that
the resulting table verifies 2-anonymity. This is demonstrated in Table 2.5.

ZIP code age

4217 30–39

4217 30–39

1000–1999 75–79

1000–1999 75–79

Table 2.5: Dataset from Table 2.4, after generalization

Generalization makes data more imprecise to satisfy privacy requirements, but still allow
useful data analysis to be done. In our example, changing precise ages into age ranges might
be enough to analyze whether a disease affects younger or older people disproportionately.

Transforming a numerical value into a range is one of the most typical ways of performing
generalization. Other ways include removing a value entirely (e.g. transforming a gender
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value into “gender unknown”), or using a generalization hierarchy (e.g. transforming an
ICD-10 diagnosis code into a truncated code, or into the corresponding block [204]).

In the previous example, our records had relatively “close” demographic values, which al-
lowed generalization to keep reasonably accurate information while still ensuring 2-anonymity.
What if an additional record was added to Table 2.4, with ZIP code 9755 and age 13? The
other four records can be grouped in two pairs as above, but that new record is an outlier.
Grouping it with one of the pairs above would mean having very large ranges of values (age
between 10 and 39, or ZIP code being completely removed), which would significantly reduce
the utility of the resulting data.

Suppression can be used in this case: we could simply remove such outlier values, and
only use generalization on records that can be. Using both generalization and suppression
on this example could lead to the same 2-anonymous table as before, on Table 2.5. When
suppression is used, there are usually strictly less records in the transformed table than in
the original. On large datasets, allowing a small percentage of suppressed records typically
allows the result to be k-anonymous without requiring too much generalization.

How to use generalization and suppression to reach k-anonymity, while maximizing the
utility of the output data? Finding the optimal strategy is NP-hard for many reasonable
definitions of optimality [282], but a large number of approximation algorithms have been
proposed in the literature [168], and implemented as open-source software [20, 339, 363,
371].

2.1.1.3 Limits of k-anonymity

k-anonymity is simple to understand, and it seems natural to assume that reidentification
attacks are well mitigated when a dataset is made k-anonymous. However, it only mitigates
this particular kind of attack, and is difficult to use in some contexts. We present three such
limitations, each of which is a major motivation for alternative definitions we introduce next:
k-map, l-diversity, and δ-presence.

First, k-anonymity is difficult to use for smaller datasets, such as ones with 100 records or
less. For many of these datasets, especially in the context of a healthcare study, the attacker
might not know that their target is in the dataset in the first place. As such, the “search space”
for reidentification is larger than the dataset: if a single user has certain characteristics in the
dataset, but many more people share these characteristics outside of the dataset, the attack
might still fail.

Second, we implicitly assumed that the attacker only wanted to select a target, and link a
specific record with this target. In Sweeney’s original attack, the privacy risk came from the
additional sensitive data that was obtained after reidentification: medical records associated
with the target. If a quasi-identifier combination is always associated with the same sensitive
value in a dataset, then the attacker can learn this value even without reidentifying the record.

Third, for some datasets, being in the dataset constitutes sensitive information in the first
place: for example, everyone participating in a clinical trial for a specific drug might share
the same sensitive diagnostic.

k-anonymity falls short of modeling the three scenarios above. We elaborate on these issues
in the following three sections: each section introduces a definition that attempts to solve one
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of these issues. k-anonymity has more problems than those listed above, we come back to
these when introducing differential privacy.

2.1.2 k-map

Suppose a researcher conducted a survey about human sexual behavior in the US. The answers
to that survey are obviously revealing sensitive information about individuals. Assume that
the data collected is small-scale: only 40 subjects volunteered for the study. Afterwards, the
researcher wants to share this data with other researchers. Looking at the columns in the
dataset, they make the assumption that ZIP code and age are likely to be used in reidentification
attacks. Could k-anonymity be used to share it in a safe way?

It will likely prove difficult to do without losing a lot of valuable information. For k = 10,
a rather small value, we might need buckets like 20–49 for age. Those would obviously not
provide a lot of statistical value. This large loss in utility was to be expected: with so few
people in your database, it is necessary to bundle together very different age values.

Do we really need k-anonymity? Who are the attackers, in this scenario? The researchers
with whom you share the data, and possibly unknown parties if the data ever leaks, might
not have background information about who is in the dataset. Thus, the attacker must not
only distinguish between different records, but they need to actually find the real identity of a
record based on its information. This attacker is significantly weaker than the one implicitly
assumed in the k-anonymity model!

ZIP code age

85535 79

60629 42

Table 2.6: Two sample rows from a hypothetical clinical study.

Consider two different rows in this hypothetical database, listed in Table 2.6. At first glance,
the “amount of information” for these two individuals seems to be the same. Taking a look
at the values, however, tells a different story. ZIP code 85535 corresponds to the small town
of Eden, Arizona. Approximately 20 people live in this ZIP code: it is likely that only one
person in this ZIP code is exactly 79 years old. ZIP code 60629, however, corresponds to a
part of the Chicago metropolitan area. More than 100,000 people live there: probably more
than 1,000 of them are 42 years old.

Therefore, it seems like the first row is very easy to reidentify, but that we do not have
enough information to reidentify the second row. k-anonymity does not capture this consider-
ation: both rows are unique in the dataset. A variant of k-anonymity is needed for this case:
k-map.

Just like k-anonymity, k-map requires us to determine which columns of the database are
quasi-identifiers, and be used by the attacker to reidentify their target. This information alone,
however, is not enough to compute k-map. In the example above, we assumed that the attacker
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does not know whether their target is in the dataset. So what are they comparing a given
record with? This comparison is done across all other individuals sharing the same values in a
larger, sometimes implicit, dataset. For the previous example, this could be “everybody living
in the US”, assuming the attacker has no prior information on who could potentially be in this
dataset. We call this larger table the reidentification dataset, and denote it byU ⊂ Q1 × · ×Qa.

Once the choice of quasi-identifiers and reidentification dataset is done, the definition is
straightforward: it is similar to k-anonymity, except we count the number of records in the
larger datasetU.

Definition 2 (k-map [352]). Assume T = Q1 × · · · ×Qa ×C1 × · · · Cb. A database D satisfies
k-map for a reidentification datasetU if for every possible combination of quasi-identifier
values (q1, . . . , qa) ∈ Q1 × · · · × Qa present in D, this combination is also present in at least
k records inU.

In our example, this corresponds to counting the number of people in the US who share
the quasi-identifier values of each row in the dataset. For our sample dataset in Table 2.6, the
values of the first row matched only one person in the US, so this dataset does not satisfy
k-map for any value of k ≥ 2. How to obtain a larger k? We can use techniques similar to the
ones mentioned previously, in Section 2.1.1.2, and generalize some of these quasi-identifiers.
An example is given in Table 2.7.

ZIP code age

85000–85999 79

60629 42

Table 2.7: A dataset satisfying k-map for a large k.

ZIP codes between 85000 and 85999 include the entire city of Phoenix, Arizona. More
than 36,000 people between 75 and 84 years old live in Phoenix [315], so there are probably
more than 1,000 people who match the quasi-identifiers values of the first row. We saw earlier
that the second row also matched 1,000+ people. Thus, this generalized dataset satisfies
1000-map.

2.1.2.1 Policy questions raised by k-map

It is easy to see that k-map raises the same difficult policy questions as k-anonymity, men-
tioned in Section 2.1.1.1: it is difficult to choose k, and it might not be obvious to choose
which columns are considered quasi-identifiers. In addition, k-map requires choosing the
reidentification datasetU, which is another difficult choice. Our choice to take the entire US
population in the example above is very optimistic; it implicitly assumed that the attacker had
no additional information about their target whatsoever. With such a reidentification dataset,
not much generalization is needed to make this dataset k-map.

In many cases, it would make sense to assume that the attacker could use a smaller
reidentification database. For example, if the survey was advertised in a specific online



16 defining anonymization

community, the attacker could make the reasonable assumption that all survey participants
are also members of this community. This would allow the attacker to restrict their search,
and decrease the number of possible options for each row. As the reidentification dataset gets
smaller, so does the k in k-map. The extreme would be to consider that the dataset D itself is
used for reidentification: in this case, k-map is the same as k-anonymity.

2.1.2.2 k-map in practice

The reliance of k-map on modeling a reidentification dataset makes it significantly more
difficult than k-anonymity to use in practice. In general, the person anonymizing the data does
not have access to such a reidentification dataset, nor can they know which alternative dataset
might be used. Procuring all available commercial datasets is generally impossible. Thus,
transforming a dataset so the output satisfies k-map seems quite difficult in practice. In some
situation however, the problem is tractable.

For example, suppose that instead of releasing all the data, we release a random sample of
the original dataset. In this case, it is reasonable to assume that the attacker does not know
which of the original records were sampled, so we can compute the k-map value based on the
original dataset.

Another option is to assume that the data D is a representative (or unbiased) sample of
a larger dataset. This is a reasonable approximation to make if people in the dataset were
selected uniformly at random across a larger population, as is common in scientific studies. In
this case, it is possible to compute an estimate of the k-map value for the data using statistical
methods, either with purely statistical methods [137], or by approximating the reidentification
dataset using publicly available data [82].

Finally, for small-case studies, a motivated data owner could try and do the job of an
attacker “by hand”: go through each record and try to map it to a real person, similarly to
what we did in the toy example of Table 2.6. The result of such an analysis is essentially an
estimate of the k-map value. This last option is approximative, and obviously not scalable.

2.1.3 l-diversity

Consider voter data, commonly available in most US states. This data is public by law, and
contains full names. One could point at an arbitrary record and claim that we “reidentified”
this individual. This “attack” always succeeds, but is not particularly interesting. In Sweeney’s
reidentification attack detailed in Section 2.1.1, the privacy issue was not only about finding
the individual associated with a given record, but rather, about retrieving sensitive information
linked with the record: diagnostics and drug prescriptions. The leak of this sensitive infor-
mation associated to a specific individual was the real issue, more than the reidentification
itself.

Are there cases where it is possible to find out sensitive information about someone, without
reidentifying their exact record? Let us look at an example where we explicitly add sensitive
information in the dataset. Each row of Table 2.8 contains a direct identifier (name), two
quasi-identifiers (ZIP code and age), and one sensitive property (diagnostic).
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name ZIP code age diagnostic

Alice 4217 34 Common cold

Bob 4212 39 n/a

Camille 4732 39 HIV

Dede 4743 23 HIV

Table 2.8: A sample dataset with a sensitive column.

The sensitive property is not a quasi-identifier: it is the main information that we are trying
to keep secret from the attacker, so it is reasonable to assume that the attacker does not know
about it a priori. Let us use generalization to make this dataset 2-anonymous. The result can
be found in Table 2.9: all combinations of ZIP code and age appear twice.

ZIP code age diagnostic

4210–4219 30–39 Common cold

4210–4219 30–39 n/a

4700–4799 20–39 HIV

4700–4799 20–39 HIV

Table 2.9: Dataset from Table 2.8, after generalization to satisfy 2-anonymity.

Now, assume the attacker wants to find Camille’s diagnostic. They know that Camille has
ZIP code 4732 and age 23. They can deduce that Camille’s record is the third or the fourth,
but cannot know which. However, it does not matter: both records have the same diagnostic.
So the attacker can find out that Camille’s diagnostic is HIV, even without reidentifying
Camille’s record! k-anonymity was not enough to protect the sensitive information.

To fix this, an alternative definition was proposed in [265]: l-diversity. It does not only
mandate that each individual is indistinguishable from sufficiently many others, but also
that within each group, there are multiple options for the sensitive value. In this context, the
space of possible records is modeled by T = Q1 × · · · × Qa × C1 × · · · Cb ×S; where S is an
arbitrary set of possible sensitive values.

Definition 3 (l-diversity [265]). Assume T = Q1 × · · · × Qa × C1 × · · · Cb ×S. A database
D is l-diverse if for every possible combination of quasi-identifier values (q1, . . . , qa) ∈
Q1 × · · · × Qa present in the dataset, there at least l distinct values s1, . . . , sl ∈ S associated
with (q1, . . . , qa) in D.

Of course, l-diversity implies l-anonymity. In Table 2.10, we use generalization to make
the dataset in Table 2.8 2-diverse. Consider our previous attacker, targeting Camille (third
row). Like before, the attacker is unable to know which record in the 2-diverse dataset
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corresponds to Camille. Besides, they also cannot know whether Camille was healthy, or has
been diagnosed with HIV. The sensitive value stays private.

ZIP code age diagnostic

4000–4999 20–34 Common cold

4000–4999 35–39 n/a

4000–4999 35–39 HIV

4000–4999 20–34 HIV

Table 2.10: Dataset from Table 2.8, after generalization to satisfy 2-diversity.

2.1.3.1 l-diversity in practice

Like k-anonymity, l-diversity is easy to compute, once the quasi-identifiers and the sensitive
value have been chosen. The basic building blocks to transform a dataset into a l-diverse one
are the same: generalization and suppression. Finding the best strategy is also done using
trial-and-error heuristics. The approach used for k-anonymity is straightforward to adapt to
l-diversity.

Since l-diversity is strictly stronger than k-anonymity (for k = l), it might seem like a
natural replacement, always beneficial for privacy. However, the utility cost of l-diversity
is usually much more significant than when using k-anonymity: some studies found that
applying 3-diversity can be worse than using 100-anonymity, for a typical classification
task [54]. This is one of the reasons why it is hardly ever used in practice.

2.1.3.2 Limits of l-diversity

Unsurprisingly, l-diversity shares similar difficulties than k-anonymity: choosing l is difficult,
as is determining which columns are quasi-identifiers or which ones are sensitive. Even if
we set aside these issues, another question looms: does l-diversity really protect the sensitive
information? Consider the dataset in Table 2.11. Like the dataset from Table 2.10, it is 2-
diverse. However, an attacker targeting the third row can still discover that their target has
either Hepatitis B, or HIV. Some uncertainty is preserved, but the attacker still gains very
sensitive information.

Another way l-diversity can fail is if by providing probabilistic information gain to the
attacker. Consider the dataset in Table 2.12. An attacker trying to gain information on one of
the rows could not know for sure what their target’s diagnostic is, but they can significantly
increase their suspicion that they have HIV. This is especially the case if we consider the
background knowledge that the attacker might have on the sensitive value: for example, if
the diagnostic of the first record was a condition that the attacker knows their target does not
have.

How to protect against this type of probabilistic information gain? Requiring that sensitive
attributes are diverse is not enough, we would need to also require that the distribution of
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ZIP code age diagnostic

4000–4999 20–34 Common cold

4000–4999 35–39 Hepatitis B

4000–4999 35–39 HIV

4000–4999 20–34 HIV

Table 2.11: A different 2-diverse dataset that reveals sensitive information.

ZIP code age diagnostic

4000–4999 20–34 Common cold

4000–4999 20–34 HIV

4000–4999 20–34 HIV

4000–4999 20–34 HIV

4000–4999 20–34 HIV

4000–4999 20–34 HIV

4000–4999 20–34 HIV

4000–4999 20–34 HIV

4000–4999 20–34 HIV

Table 2.12: Another 2-diverse dataset that leaks probabilistic information.

sensitive values is roughly the same that the rest of the data. If 40% of the records are “healthy”
in the overall data, then each bucket should also have roughly 40% of “healthy” records. This
way, the attacker’s knowledge cannot change too much from the baseline. This is the core
idea behind another definition: t-closeness [251]. This definition is stricter than l-diversity,
and unsurprisingly, comes with even greater utility loss. We do not formally introduce it here.

2.1.4 δ-presence

The core intuition behind k-map was that we assumed the attacker did not know who was in
the dataset. Let us go back to this idea, with a slightly different scenario. Instead of a survey
about sensitive information, like human sexual behavior, consider a clinical trial for a drug
treating a particular condition, like HIV. The goal is still the same: safely share the data with
other people.

These two settings look similar at first glance, but there is a crucial difference. Which
information is sensitive, exactly? For the survey, the answers of each participant were sensitive,
as they revealed intimate details. For the clinical study however, being in the dataset is the
sensitive information: everyone in the clinical trial has been diagnosed with HIV. If an attacker
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finds out that their target has taken part in the study, they learn that their target suffers from
this disease.

So, what does it change in practice? Let us assume that the dataset contains the records in
Table 2.13. Following the same reasoning as for k-map, we can research the demographics of
the population of ZIP code 85535. Table 2.14 contains the number of people living in this
ZIP code, depending on age range.

ZIP code age

85535 10

85535 12

85535 13

85535 13

85535 16

85535 43

Table 2.13: A sample dataset of participants to a clinical trial.

age population

10–19 5

20–29 5

30–39 10

40–49 10

50–59 20

60+ 15

Table 2.14: Hypothetical population of ZIP code 85535.

We could transform this part of this dataset to have it satisfy k-map. A possible strategy is
listed in Table 2.15.

Is this strategy sufficient to successfully hide who participated in the survey? An attacker
could know that there are 5 people aged between 10 and 19 in ZIP code 85535. Then, by
looking at our de-identified dataset, the attacker can figure out that all of them are part of
the dataset. Thus, they all have been diagnosed with HIV. Similarly to the discussion in
Section 2.1.3, the attacker learned something sensitive about individuals, without reidentifying
any record.

How to define a notion of anonymization that protects against this attack? Recall what
we measured for our previous privacy definitions? For each combination of quasi-identifiers,
we counted the number of records associated with this combination in the dataset (for k-
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ZIP code age

85535 10–19

85535 10–19

85535 10–19

85535 10–19

85535 10–19

85535 40–49

Table 2.15: A generalized version of the dataset from Table 2.13 which satisfies 5-map.

anonymity), or in a larger population (for k-map). In the previous example, a privacy issue
arose because for some combination of quasi-identifier, these numbers were equal. To detect
this, we instead compute and impose a bound on the ratio between those two numbers. This
is the core intuition of δ-presence.

Definition 4 (δ-presence [297]). Assume T = Q1 × · · · × Qa × C1 × · · · Cb. A database D
satisfies δ-presence for a reidentification datasetU if for every possible combination of quasi-
identifier values (q1, . . . , qa) ∈ Q1 × · · · × Qa, if this combination is present in k records in D
and K records inU, then k/K < δ.

The lower δ is, the stronger the definition becomes. The example above had δ = 1: the
ratio for the records with ZIP code 85535 and age range 10–19 is 5/5 = 1. If δ = 0.95, then
similarly to the example in Section 2.1.3.2, the attacker might still get significant probabilistic
information. The original definition was introduced with an additional lower bound on this
ratio, in addition to the upper bound. This captures the intuition that the attacker should also
not be able to find out that their target is not in the dataset. This latter concern is less frequent
in practice, so we omitted it from the definition above for simplicity.

To make our dataset satisfy δ-presence for a lower δ, we could generalize the data further,
as demonstrated in Table 2.16. This table satisfies 0.25-presence: the ratio for the records
with age range 10–39 becomes 5/(5 + 5 + 10) = 0.25, while ratio for the record with age
40–49 is still 0.1.

2.1.4.1 δ-presence in practice

δ-presence suffers from the same policy and applicability difficulties as k-map, listed in
Sections 2.1.2.1 and 2.1.2.2: without access to the reidentification datasetU, it is impossible
to compute δ-presence exactly. Approximations are also possible, like the one proposed
in [298], but they are difficult to use in practice: they require a statistical model of the
reidentification dataset, and the proposed approximation algorithm is computationally costly.
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ZIP code age

85535 30–39

85535 30–39

85535 30–39

85535 30–39

85535 30–39

85535 40–49

Table 2.16: A generalized version of the dataset from Table 2.13 which satisfies 0.25-presence.

2.1.5 Flaws of syntactic privacy definitions

The four definitions mentioned in the previous section all seem to have serious limitations.
Many of these attempts at defining anonymization feel like “patches” applied to prior notions
to fix the most obvious flaws. However, it looks like any of these patches only creates more
difficult questions, and does not suppress privacy issues entirely. Choosing when to apply each
definition is also difficult: the definitions protect different aspects, so one has to think about
what kind of attacker might want to attack the data before choosing the relevant definition.
This choice itself is a difficult policy decision, and choosing the wrong attack model can have
devastating consequences.

Perhaps more importantly, these definitions all share some fundamental issues. First, they
all break down if the attacker has unexpected background knowledge. If the choice of quasi-
identifier columns is wrong, and the attacker knows some auxiliary information that we did
not expect, and all guarantees are lost. This background knowledge issue can also happen
if the attacker has some information about the original database that we did not expect. For
example, in l-diversity, if the attacker knows the information some other users in the dataset,
they might reduce the number of possible options for the sensitive value. This problem
is especially worrying if the attacker can potentially influence the data: k-anonymity, for
example, is pointless if the attacker can simply add arbitrarily many elements to the dataset to
have a specific quasi-identifier combination pass the threshold. This last attack vector might
not be a major concern for medical data, but is realistic for e.g. online services, where a single
individual could easily create fake accounts.

Second, they implicitly assume that the data release happens in isolation: the original
data will not be published in any other way, nor will related data from different datasets.
Controlling that a specific dataset is only released once might be feasible in theory. However, it
is near-impossible to predict what might happen in the future, and invalidate a risk assessment
made at a certain point in time, by some third-party. For example, consider two hospitals who
independently release medical information using l-diversity, exemplified in Table 2.17. An
attacker knowing that their target (with ZIP code 4217 and age 32) visited both hospitals can
compare both releases, look at which diagnostic is the same in both, and deduce that their
target has HIV.
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ZIP code age diagnostic

4000–4999 20–34 Common cold

4000–4999 35–39 Otitis

4000–4999 35–39 HIV

4000–4999 20–34 HIV

ZIP code age diagnostic

4000–4999 35–39 HIV

4000–4999 35–39 Broken leg

4000–4999 20–34 n/a

4000–4999 20–34 Flu

Table 2.17: Two l-diverse datasets.

Such attacks are not theoretical: in [158], the authors experimentally show that this scenario
can plausibly lead to such disclosures. Two distinct organizations publishing related data is
not the only scenario in which this problem can arise: multiple k-anonymous views of the
same data can also lead to k-anonymity violations [400], and the same problem can arise for
multiple publications of the same dynamic dataset over time [395].

Third, the fact that a dataset satisfies a given privacy definition does not guarantee that
the data release did not leak information that we were trying to protect. Indeed, consider an
“arbitrary privacy definition” Def, and pick three arbitrary datasets D1, D2 and D3, that all
satisfy this privacy definition. Consider the following algorithm, built by an attacker who
wants to find out private information about their target Camille.

• If Camille is in the dataset and has HIV, output D1.

• Else, if Camille is in the dataset, output D2.

• Else, output D3.

This algorithm always produces an output that satisfies the required privacy definition. It
is possible to instantiate Def as k-anonymity, l-diversity, δ-presence, or any other definition
applying to datasets that we could think of. But of course, the algorithm also reveals private
information that all definitions we previously listed tried to protect!

This example is, of course, not realistic: nobody would actually use an algorithm like this
to anonymize their data. However, it demonstrates a deep issue with this class of definitions:
knowing that an algorithm always outputs a dataset that satisfies a given definition is not
enough to trust this algorithm not to inadvertently leak data. This is not only a theoretical
concern, either: minimality attacks use characteristics of anonymization algorithms that adapt
their strategy to optimize the utility of the output data [246, 247, 406] to reverse-engineer the
original contents of the database [389].

For all definition seen so far, it is possible to check simply by looking at the output of
an algorithm, whether this output satisfies the definition. Anonymity is seen as a syntactic
property, which is why we call these definitions syntactic privacy definitions. How to overcome
the fundamental issues of this approach? We need to change the perspective. Instead of
considering anonymization as a property of the output dataset, we need to consider it as a
property of the process, and come up with semantic formalizations of anonymity, that describe
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what information this process can potentially leak. This is one of the core insights behind
differential privacy.

2.1.6 Differential privacy

The flaws of syntactic definitions pointed in the previous section are impossible to fix without
a change in paradigm. Trying to find a criterion for a database to be anonymized is always
going to be flawed, so we need a different approach. One of the core insights of differential
privacy, which we define in this section, is that anonymization should be a property of the
process instead. The definition should apply to the anonymization mechanism, and not to its
output.

What property do we want an anonymization mechanism to have? Intuitively, we want it to
not leak private information: an attacker with access to the output of the mechanism should
not learn anything about an individual. A first attempt could be to require the mechanismM to
be such that for any databases D1 and D2 that differ in only one record,M (D1) =M (D2).

Why would such a definition accomplish our goal? For any single record of a database
D, if we change or remove that record completely, we would still obtain the same output.
This means that the output does not leak anything about the individual corresponding to this
record: if it did, changing the record would change the output, and an attacker might be able
to notice.

This definition corresponds to a privacy goal set out by Dalenius. In 1977, he defined
statistical disclosure as follows.

If the release of a statistic S makes it possible to determine the value [of a single
record] more accurately than is possible without access to S , a disclosure has
taken place [. . . ]

The goal is to prevent this from happening. Our definition satisfies this goal: the output
does not leak anything about individual records. The problem, of course, is that this definition
is trivial. Any database D2 can be obtained from any database D1 by a series of “neighboring”
databases, removing and adding records one by one as needed; so for any databases D1 and
D2,M (D1) =M (D2). It is not only impossible to learn anything about individual records
by looking at the output, but it is impossible to learn anything about the entire database.
Allowing the mechanismM to be randomized would not change anything: the equality would
be between probability distributions, but the result would be the same.

In that sense, Dalenius’ privacy goal is fundamentally impossible to achieve. If we cannot
learn anything about individuals, then by extension, we cannot learn anything about the
database either. Thus, we have to accept leaking some information about individuals, and try
to quantify and limit this leakage of private information. This is what ε-differential privacy
does: rather than requiring thatM (D1) is exactly the same asM (D2), for neighboring D1
and D2, it requires thatM (D1) is almost the same asM (D2). This notion is formalized via
the concept of ε-indistinguishability.
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Definition 5 (ε-indistinguishability [128]1). Two random variables A and B are ε-indistinguishable,
denoted A ≈ε B, if for all measurable sets X of possible events:

P [A ∈ X] ≤ eε ·P [B ∈ X] and P [B ∈ X] ≤ eε ·P [A ∈ X] .

Informally, A and B are ε-indistinguishable if their distributions are “close”; and the smaller
ε is, the closer A and B are. This notion can then be used to define differential privacy.

Definition 6 (ε-differential privacy [122, 128]). A mechanismM is ε-differential private (or
ε-DP) if for all datasets D1 and D2 that differ only in one record,M (D1) ≈ε M (D2).

Just like k in k-anonymity, this definition depends on a numeric parameter ε. The smaller
the ε, the stronger the definition; if ε = 0, the distributions are exactly the same, and as
discussed above,M is trivial. Setting ε is, again, a non-trivial policy decision. However, this
time, we can formally quantify the privacy leakage depending on the value of ε, and make
statements such as “an attacker who thinks their target is in the dataset with probability 50%
can increase their level of certainty to at most 75%”.

How does this work? Let us first consider a simple example, called randomized response.

2.1.6.1 A simple example: randomized response

Interestingly, randomized response was introduced in 1965 [383], 40 years before differential
privacy. It works as follows. Suppose we want to do a survey to know how many people are
respecting social distancing guidelines during the COVID-19 pandemic. If we naively go out
and ask people whether they are, many might feel uncomfortable answering honestly, and lie
to us. So we can the following mechanism. The participants no longer directly answer the
question “are you respecting social distancing guidelines?”. Instead, each of them will flip a
coin, without showing it to us.

• On heads, the participant tells the truth (Yes or No).

• On tails, they flip a second coin. If the second coin lands on heads, they answer Yes.
Otherwise, they answer No.

How is this better for survey respondents? They can now answer Yes without revealing
that they are doing something illegal. When someone answers No, we cannot know their true
answer for sure. They could be breaking social distancing guidelines, but they might also
have answered at random. Let us compute the probabilities of each answer someone who
broke social distancing guidelines.

• With probability 50%, they will say the truth and answer No.

• With probability 50%, they will answer at random.

– They then have another 50% chance to answer Yes, so 25% chance in total.

1 This notion is similar to the cryptographic notion of indistinguishability [169], except the cryptographic version has
ε = 0, and an additive error term instead, which is negligible. A similar notion, (1, ε)-privacy, was defined in [70],
where (1 + ε) used in place of eε, and it was also called log-ratio distance in [182]
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– Similarly, in total, they have a 25% chance to answer No.

All in all, we get a 75% chance to answer No and a 25% chance to answer Yes. For
someone who respecting social distancing guidelines, the probabilities are reversed: 25%
chance to answer No and 75% to answer Yes. Calling this randomization mechanismM:

P [M (Yes) = Yes] = 0.75 P [M (Yes) = No] = 0.25

P [M (No) = Yes] = 0.25 P [M (No) = No] = 0.75

Now, 0.75 is three times bigger than 0.25. So if we choose ε such as eε = 3 (which
corresponds to ε ' 1.1), this process is ε-differentially private. This intuitive notion of
plausible deniability translates naturally in the language of differential privacy.

Of course, with a differentially private process like this one, we are getting some noise
into our data: some answers are going to be random. But given enough answers, with high
probability, the noise will cancel itself out. Suppose that we have 1000 answers in total: 400
of them are Yes and 600 are No. About 50% of all 1000 answers are random, so we can
remove 250 answers from each count. In total, we get 150 Yes answers out of 500 non-random
answers, so about 30% of Yes overall.

What if we want the process to offer a higher level of privacy? Instead of having the
participants answer randomly with probability 50%, we can have them answer randomly 75%
of the time. Conversely, if you want less noise instead, we could have them answer randomly
only 25% of the time. There is a natural trade-off between privacy (for individuals) and utility
(for the data), which is present in all applications of differential privacy.

How can we now translate this intuition into a formal statement about the information gain
of an attacker? A relatively simple formalization is the Bayesian interpretation of differential
privacy, generalizing an analysis that was originally done in the context of randomized
response mechanisms [144].

2.1.6.2 Formally quantifying the attacker’s information gain

Let us consider a more generic scenario than the previous example. We have a mechanismM
which is ε-differentially private. We run it on some database D, and release the outputM (D)
to an attacker. Then, the attacker tries to find out whether their target is in D. This attack goal
is similar to the one of δ-presence (see Section 2.1.4), but we could just as easily have the
attacker try to find out the sensitive value associated to their target, or any other information
about a single individual.

Under differential privacy, the attacker cannot gain a lot of information about their target.
This is true even if this attacker has a lot of knowledge about the dataset. Let us take the
stronger attacker we can think of: they know all the database, except their target. This attacker
has to determine which database is the real one, between two options: one with their target in
it (denote it Din), the other without (Dout).

So, in the attacker’s model of the world, the actual database D can be either Din or Dout.
They might have an initial suspicion that their target is in the database. This suspicion
is represented by a Bayesian probability P [D = Din]. This probability can be anything
between 0 and 1. Say, 0.9 if the attacker’s suspicion is strong, 0.01 if they think it is very
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unlikely, 0.5 if they have no idea. Similarly, their suspicion that their target is not in the
dataset is also a probability, P [D = Dout]. Since there are only two options, P [D = Dout] =
1 −P [D = Din].

Now, suppose the attacker sees that the mechanism returns output O. How much information
did the attacker gain? This is captured by looking at how much their suspicion changed after
seeing this output. In mathematical terms, we have to compare the initial suspicion (the
prior) P [D = Din] with the updated suspicion P [D = Din

∣∣∣M (D) = O] (the posterior).
This posterior is the attacker’s model of the world after seeing O. With ε-differential privacy,
the posterior is never too far from the prior, and we can quantify this phenomenon exactly, as
shown in Proposition 1.

Proposition 1. Assume D is a database chosen randomly between D1 and D2. Then the
posterior P [D = D1

∣∣∣M (D) = O] is bounded by:

P [D = D1]

eε + (1 − eε)P [D = D1]
≤ P [D = D1

∣∣∣M (D) = O] ≤
eε ·P [D = D1]

eε + (eε − 1)P [D = D1]
.

Proof. First, we use Bayes’ rule to express the posterior as a function of the prior:

P [D = D1
∣∣∣M (D) = O] =

P [D = D1] ·P [M (D) = O
∣∣∣ D = D1]

P [M (D) = O]

=
P [D = D1] ·P [M (D1) = O]

P [M (D) = O]
.

Then, we divide the posterior on D1 and the posterior on D2 to make the unknown P [M (D) = O]
term disappear:

P [D = D1
∣∣∣M (D) = O]

P [D = D2
∣∣∣M (D) = O]

=
P [D = D1]

P [D = D2]
·

P [M (D1) = O]

P [M (D2) = O]
.

Note that the right-most term are the same as in the definition of differential privacy, so we
have:

e−ε ≤
P [M (D1) = O]

P [M (D2) = O]
≤ eε.

Plugging this into the previous formula, we get:

e−ε
P [D = D1]

P [D = D2]
≤

P [D = D1
∣∣∣M (D) = O]

P [D = D2
∣∣∣M (D) = O]

≤ eε
P [D = D1]

P [D = D2]
. (2.1)

Replacing P [D = D2] by 1 −P [D = D1], doing the same for P [D = D2
∣∣∣M (D) = O],

and solving for P [D = D1
∣∣∣M (D) = O], leads to the desired result. �

Note that the ratio of probabilities that appeared in the proof of Proposition 1 a simple
interpretation: those are what gamblers call betting odds. In a sport game of team A vs. team
B, betting odds of 2:1 means that according to bookies, the probability for A to win is twice
as much as for B. This corresponds to probabilities of about 67% and 33%, respectively. In
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Figure 2.1: Prior-posterior bounds for ε-DP with ε = ln 3.

particular, Equation 2.1 show that an alternative interpretation of differential privacy is that
betting odds cannot change much after knowing the output of a DP mechanism.

For example, with ε = ln 3, the upper and lower bounds for the posterior as a function of
the prior are depicted in Figure 2.1. The black line is what happens if the attacker did not
get their prior updated at all. The blue lines are the lower and upper bounds on the updated
suspicion: it can be anywhere between the two. We can visualize the example mentioned in
the previous section: for an initial suspicion of 50%, the updated suspicion is approximately
between 25% and 75%.

This property can be used to convey the meaning of ε to people who are not experts. An ε
of ln 3 can be said to guarantee that at most, the attacker “halves their uncertainty”. Similarly,
ε = ln 2 can “reduce the uncertainty by one third”, while ε = ln 4 can “reduce it by two
thirds”. Though not very formal, this formulation is understandable by most, and has the
advantage of creating appropriate rejection reactions to large values of ε.

What does it look like for various values of ε? In Figure 2.2, we visualize the generalization
of the bounds in Figure 2.2. For larger values of ε, the information gain increases fast: for
example, with ε = 5. Then, an attacker can go from a small suspicion (say, 10%) to a very
high degree of certainty (94%).

2.1.6.3 Properties of differential privacy

Differential privacy has several properties that make it a more convincing and convenient
definition of anonymization than other definitions seen so far. First, many problems we
pointed out in syntactic definitions do not apply to differential privacy. The definition pro-
tects anything associated with a single individual, including presence in the database and
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Figure 2.2: Prior-posterior bounds for ε-DP, for various values of ε.

sensitive information. Differential privacy also protects against an attacker that has unlimited
background knowledge: D1 and D2 can be arbitrary neighboring databases, so the attacker
could even choose all records and only have uncertainty about their target. These two aspects
greatly simplify policy choices: a manual assessment of the attacker’s goals and capabilities
is no longer required.

As proven in the previous section, and explored in more detail in Section 2.2, differential
privacy allows us to prove semantic properties: it limits the amount of information that
an attacker can gain, no matter what attack method is used and what kind of output the
mechanism generates. It does not matter what exact form the output takes: it can be a statistic,
synthetic data, a machine learning model, etc.

In addition, differential privacy has a few properties that make it convenient to use. Its
semantic guarantees are preserved by transformations that happen after the differential privacy
stage. This property, called post-processing, makes it easy to reason about complex data
pipelines that involve an anonymization step: everything downstream of the DP step stays DP.

Proposition 2 (Post-processing of differential privacy [30]). LetM be an ε-DP mechanism,
and let f be an arbitrary function. Then the function D→ f (M (D)) is also ε-DP.

Differential privacy also satisfies convexity, a second property which is less crucial to
practical use cases, but is another indication that DP has the kind of semantic guarantees that
we expect: choosing between two DP mechanisms at random still leads to a DP mechanism.
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Proposition 3 (Convexity of differential privacy [225, 226]). Let M1 and M2 be two ε-
DP mechanisms, and p ∈ (0, 1). The mechanism M defined by M (D) = M1 (D) with
probability p, andM (D) =M2 (D) with probability 1 − p, is ε-DP.

Differential privacy also composes well: combining the result of two DP mechanisms is
still DP. This property, especially combined with post-processing, is how most complex DP
algorithms are built: by assembling simpler mechanisms. For example, a DP algorithm for
sums can be combined with a DP algorithm for counts to create a DP algorithm for average.
There are several types of composition: parallel composition, sequential composition, and
adaptive composition. We introduce the first two below.

Proposition 4 (Parallel composition [122]). Let M1 be a ε1-DP mechanism, and M2 a
ε2-DP mechanism. For any dataset D, let D1 and D2 be the result of an operation that
separates records in two disjoint datasets. Then the mechanism M defined by M (D) =
(M1 (D1) ,M2 (D2)) is (max (ε1, ε2))-DP.

This property allows us to build locally differentially private mechanisms, in which a central
server can compute global statistics without accessing the raw data from each individual. In
this thesis, we mostly focus on sequential composition, which we simply call composition.

Proposition 5 (Sequential composition [122]). LetM1 be a ε1-DP mechanism, andM2
a ε2-DP mechanism. Then the mechanism M defined by M (D) = (M1(D),M2(D)) is
(ε1 + ε2)-DP.

Note that the formula in Proposition 5 is not tight, especially when many mechanisms are
composed. A significant body of research focuses on obtaining tighter composition bounds,
either with or without knowledge of mechanisms used for composition [57, 132, 133, 213, 278,
284]. Proposition 5 still holds ifM2 depends on the value ofM1(D): this variant is called
adaptive composition. This latter property allows to quantify the gain of information over time
of an attacker interacting with a differentially private query engine. Proposition 5 still holds
for sequential composition; most of the tighter results also do, with some exceptions [114].

Data privacy definitions that are a property of a mechanism and not of the output dataset
were already proposed in as early as 2003 [144]. However, thanks to its useful properties,
differential privacy quickly became the flagship of data privacy definitions. Thousands of
scientific papers have explored this notion and its variants, or introduced algorithms that
satisfy it. Large organizations are also investing in differential privacy research and exploring
the use of differential privacy for practical use cases: examples include the US Census
Bureau [4, 159], Google [141], Apple [360], Microsoft [107], LinkedIn [224], Uber [210],
etc.

2.1.6.4 The Laplace mechanism

Making simple statistics differentially private is relatively easy. Suppose, for example, that we
have a database collecting people’s eye colors, and we want to publish how many people have
green eyes? Publishing the true answer is not differentially private, even if a lot of people
have green eyes. Indeed, with differential privacy, we need to assume that the attacker knows
almost all records, and only has uncertainty about their target. In this example, it means that
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they already know the eye color of everyone in the dataset, except their target. So if we output
the real number k, they can compare it with the number of people with green eyes among the
people they know. If it is k − 1, then the target has green eyes. If it is k, then the target does
not.

What can we do to prevent this? We can add noise to the real statistic: instead of returning
the true answer, we generate a random number from a certain probability distribution, add
this number to the original answer, and return this noisy sum. The most common probability
distribution used in differential privacy is called the Laplace distribution. This distribution
has a parameter, its scale, which determines how “flat” it is.

Definition 7 (Laplace distribution). The Laplace distribution of mean 0 and of scale b > 0 is
the probability distribution with probability density function:

PDF(x) =
1

2b
exp

(
−
|x|
b

)
.

Figure 2.3 shows the probability density function of a Laplace distribution of scale b = 1
ln 3 .
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Figure 2.3: Laplace distribution of scale b = 1
ln 3 .

To make our statistic above ε-DP, we pick a random value according to a Laplace distri-
bution of scale 1

ε , and we add it to the real value. Figure 2.4 gives a visual intuition of why
it works. It shows the distribution of the number we return, depending on whether the true
count is 1000 (blue line, the target does not have green eyes) or 1001 (red line, the target has
green eyes).

Suppose the real number is 1001, and we returned 1003. From the attacker’s perspective,
what is the likelihood that the original value is 1000 vs. 1001? The hypothesis “the true
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Figure 2.4: Laplace distribution of scale b = 1
ln 3 added to 1000 (blue) and 1001 (red).

answer is 1001” is a bit more likely: generating a noise of 2 is more likely than a noise of 3.
How much more likely? The ratio of probability density functions is exactly:

PDF(2)
PDF(3)

=

1
2b exp

(
−
|2|
b

)
1

2b exp
(
−
|3|
b

)
= exp ((−2 + 3) ln 3)

= 3.

We can perform the same computation to compare any two events where we add a noise of k
vs. k + 1 for any k, and it is easy to check that the shape of the Laplace distribution guarantees
that the ratio will always be between −3 and 3. This is exactly the guarantee we need for
ε-DP, with ε = ln 3: adding Laplace noise of scale 1

ε is enough to guarantee ε-DP for cases
where we count unique individuals.

What if we want to compute and release more complicated statistics? For example, we
might have a dataset of suggestions that your customers sent us using a feedback form, where
each customer can use the form at most 5 times. We want to publish the number of suggestions
we received in total, while the attacker wants to get an idea of how many suggestions their
target published.

Adding noise picked from a Laplace distribution of scale 1
ε is not enough to get ε-DP.

Indeed, assume that the attacker’s target sent 5 suggestions, while our other 1000 customers
sent one suggestion each. The influence of the target will be larger than before, as shown in
Figure 2.5. The difference between the two curves is much larger than before; their ratio is at
most e5ε: using Laplace noise of scale 1

ε only gives 5ε-DP.
To fix this, we need to add more noise. How much more? It depends on the maximum

contribution of one individual customer. If the maximum amount of suggestions is 5, we must
add 5 times the amount of noise. In this example, using Laplace noise of scale 5

ε would give
us ε-DP; we display this in Figure 2.6.
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ln 3 added to 1000 (blue) and 1005 (red).
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Figure 2.6: Laplace distribution of scale b = 5
ln 3 added to 1000 (blue) and 1005 (red).

This informal reasoning can be extended to a wider class of statistics. The maximum
contribution of an individual is called the global sensitivity, and adding Laplace noise scaled
by this global sensitivity provides differential privacy. This method for making arbitrary
statistics differentially private, which we formalized below, is called the Laplace mechanism.

Proposition 6 (Proposition 1 in [128]). Let f : D → R be a deterministic function. The
global sensitivity of f is the smallest number s such that for all datasets D1 and D2 differing
only in one record: ∣∣∣ f (D1) − f (D2)

∣∣∣ ≤ s.

Furthermore, the mechanism M defined by M (D) = f (D) + X, where X is a random
variable sampled from a Laplace distribution of scale s

ε , is ε-differentially private.

Note that if we want to protect individuals, we need to be careful with the definition of a
record: all suggestions from the same customer must be part of the same record. We come
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back to these considerations in Section 2.2.3. In Section 4.2, we also explain how to use this
basic building block for a wide range of practical applications.

When releasing integers, instead of the Laplace mechanism, we can use a discrete distribu-
tion instead: the geometric mechanism.

Definition 8 (Two-sided geometric distribution). The two-sided geometric distribution of
mean 0 and of parameter p ∈ (0, 1) is the probability distribution such that a random variable
X sampled from the distribution follows, for all k ∈ Z:

P [X = k] =
1 − p
1 + p

p|k|.

Proposition 7 ( [166]). Let f : D → Z be a deterministic function of global sensitivity
s ∈ N. The mechanismM defined byM (D) = f (D) + X, where X is a random variable
sampled from the two-sided geometric distribution of mean 0 and of parameter p, is ln

(
1
p

)
-

differentially private.

Using the geometric distribution for integer-valued data has multiple advantages: it avoids
unexpected vulnerabilities from floating-point implementations [283], returns results that are
easier to understand for non-experts (which might be surprised by a non-integer result for e.g.
a count of unique people), and has slightly better utility than simply rounding the result of a
Laplace distribution.

2.2 systematizing variants & extensions of differential privacy

Since the original introduction of differential privacy, many variants and extensions have
been proposed to adapt it to different contexts or assumptions. These new definitions enable
practitioners to get privacy guarantees, even in cases that the original DP definition does not
cover well. This happens in a variety of scenarios: the noise mandated by DP can be too
large and force the data custodian to consider a weaker alternative, the risk model might
be inappropriate for certain use cases, or the context might require the data owner to make
stronger statements on what information the privacy mechanism can reveal.

Figure 2.7 shows the prevalence of this phenomenon: approximately 225 different notions2,
inspired by DP, were defined in the last 15 years. As we show in Figure 2.7, this phenomenon
does not seem to slow down over time. These definitions can be extensions or variants of DP.
An extension encompasses the original DP notion as a special case, while a variant changes
some aspect, typically to weaken or strengthen the original definition.

With so many definitions, it is difficult for new practitioners to get an overview of this
research area. Many definitions have similar goals, so it is also challenging to understand
which are appropriate to use in which context. These difficulties also affect experts: a number
of definitions have been defined independently multiple times (often with identical meaning
but different names, or identical names but different meanings). Finally, variants are often
introduced without a comparison to related notions.

In this section, we attempt to solve these problems by systematizing the scientific literature
on variants and extensions of differential privacy. We propose a unified and comprehensive

2 We count all the definitions which are presented as “new” in the papers introducing them.
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Figure 2.7: Accumulated number of papers which are introducing DP variants or extensions (line)
and the exact number of these definitions (bar).

taxonomy of these variants and extensions, providing short explanations of the intuition, use
cases and basic properties of each. By categorizing these definitions, we attempt to simplify
the understanding of existing variants and extensions, and of the relations between them. We
hope to make it easier for new practitioners to understand whether their use case needs an
alternative definition, and if so, which existing notions are the most appropriate, and what
their basic properties are.

We define seven dimensions: these are ways in which the original definition of DP can be
modified or extended. We list variants and extensions that belong to each dimension, and we
highlight representative definitions for each. Whenever possible, we compare these definitions
and establish a partial ordering between the strengths of different notions. Furthermore,
for each definition, we specify whether it satisfies Kifer et al.’s privacy axioms [225, 226]
(post-processing and convexity), and whether they are composable.

This section is organized as follows.

• In Section 2.2.1, we introduce our dimensions along which DP can be modified, we
present basic properties of privacy definitions, we define how definitions can relate to
each other, and explain our methodology for this literature review.

• In the following 7 sections (Sections 2.2.2 to 2.2.8), we introduce our dimensions, and
list and compare the corresponding definitions.

• In Section 2.2.9, we summarize the results from the previous sections into a table,
showing the corresponding properties with proofs, and list the known relations.
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• In Section 2.2.10, we mention related concepts and definitions which were considered
out of scope for this work, and review the related literature.

2.2.1 Preliminaries

In this section, we introduce the notations used throughout this work, formally introduce basic
properties of privacy definitions, define how definitions can relate to each other, introduce
our dimensions along which DP can be modified, and present the methodology used in this
literature review.

Throughout Section 2.2, we denote by T an arbitrary set of possible records, and byD the
space of possible datasets; where a dataset is a finite indexed family of records. We typically
use t or t′ to denote records, and D, D′, D1 or D2 to denote datasets. The indices of a dataset
are typically called i and j, with D(i) referring to the i-th record of a dataset D. We denote by
D−i the dataset D whose i-th record has been removed.

Let O denote an arbitrary set of possible outputs; outputs are typically called O, and sets of
outputs called S . A mechanism is a function, possibly randomized, which takes a dataset as
input and returns an output. Mechanisms are typically calledM, whileM (D) is usually a
random variable.

Probability distributions on T are called π, probability distribution onD are called θ, and
family of probability distributions onD are called Θ. Given some event A, letM (D)|D∼θ,A
denote the random variable corresponding to the output ofM (D), when D is drawn from a
distribution θ conditioned on A. These notations, and others used throughout this section, are
summarized in the tables on pages xvii–xviii.

2.2.1.1 Dimensions

Variants and extensions of differential privacy modify the original definition in various ways.
To establish a comprehensive taxonomy, a natural approach is to partition them into categories,
depending on which aspect of the definition they change. Unfortunately, this approach fails
for privacy definitions, many of which modify several aspects at once, so it is impossible to
have a categorization such that every definition falls neatly into only one category.

The approach we take is to define dimensions along which the original definition can be
modified. Each variant or extension of DP can be seen as a point in a multidimensional space,
where each coordinate corresponds to one possible way of changing the definition along a
particular dimension. To make this representation possible, our dimensions need to satisfy the
following two properties.

• Mutual compatibility: definitions that vary along different dimensions can be combined
to form a new, meaningful definition.

• Inner exclusivity: definitions in the same dimension cannot be combined to form a new,
meaningful definition (but they can be pairwise comparable).

In addition, each dimension should be motivatable: there should be an intuitive explanation
of what it means to modify DP along each dimension. Moreover, each possible choice within
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a dimension should be similarly understandable, to allow new practitioners to determine
quickly which kind of definition they should use or study, depending on their use case.

We introduce our dimensions by reformulating the guarantee offered by DP, highlighting
aspects that have been modified by its variants or extensions. Each dimension is attributed a
letter, and we note the dimension letter corresponding to each highlight. This formulation
considers the point of view of an attacker, trying to find out some sensitive information about
some input data using the output of a mechanism.

An attacker with perfect background knowledge (B) and unbounded computation power
(C) is unable (R) to distinguish (F) anything about an individual (N), uniformly across

users (V) even in the worst-case scenario (Q).

This informal definition of DP with the seven highlighted aspects give us seven distinct
dimensions. We denote each one by a letter and summarize them in Table 2.18. Each is
introduced in its corresponding section.

Dimension Description Typical motivations

Quantification of How is the privacy loss Averaging risk, obtaining

privacy loss quantified across outputs? better composition properties

Neighborhood Which properties are protected Protecting specific values

definition from the attacker? or multiple individuals

Variation of Can the privacy loss vary Modeling users with different

privacy loss across inputs? privacy requirements

Background How much prior knowledge Using mechanisms that add

knowledge does the attacker have? less or no noise to data

Formalism Which formalism describes Exploring other intuitive

change the attacker’s knowledge gain? notions of privacy

Relativization of What is the knowledge gain Guaranteeing privacy for

knowledge gain relative to? correlated data

Computational How much computational Combining cryptography

power power can the attacker use? techniques with DP

Table 2.18: The seven dimensions and their typical motivation.

Note that the interpretation of DP is subject to some debate. In [368], authors summarize
this debate, and show that DP can be interpreted under two possible lenses: it can be seen as an
associative property, or as a causal property. The difference between the two interpretations
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is particularly clear when one supposes that the input dataset is modeled as being generated
by a probability distribution.

• In the associative view, this probability distribution is conditioned upon the value of
one record. If the distribution has correlations, this change can affect other records as
well.
• In the causal view, the dataset is first generated, and the value of one record is then

changed before computing the result of the mechanism.

While the causal view does not require any additional assumption to capture the intuition
behind DP, the associative view requires that either all records are independent in the original
probability distribution (the independence assumption), or the adversary must know all data
points except one (the strong adversary assumption, which we picked in the reformulation
above). These considerations can have a significant impact on DP variants and extensions,
either leading to distinct variants that attempt to capture the same intuition, or to the same
variant being interpreted in different ways; in this work, we point it out when the distinction
between the two interpretations is particularly relevant to a specific variant.

2.2.1.2 Properties of privacy definitions

In this section, we introduce three abstract, desirable properties of data privacy definitions.
As shown in Section 2.1.6.3, these are satisfied by differential privacy itself. We will see in
this work that these often, but not always, satisfied by its variants and extensions.

Two important properties of data privacy notions are called privacy axioms, proposed
in [225, 226]. These are not axioms in a sense that they assumed to be true; rather, they are
consistency checks: properties that, if not satisfied by a data privacy definition, indicate a flaw
in the definition3.

Definition 9 (Privacy axioms [225, 226]).

1. Post-processing4 (or transformation invariance): A privacy definition Def satisfies the
post-processing axiom if, for any mechanismM satisfying Def and any probabilistic
function f , the mechanism D→ f (M (D)) also satisfies Def.

2. Convexity (or privacy axiom of choice): A privacy definition Def satisfies the convexity
axiom if, for any two mechanismsM1 andM2 satisfying Def, the mechanismM de-
fined byM (D) =M1(D) with probability p andM (D) =M2(D) with probability
1 − p also satisfies Def.

A third important property is, as we mentioned in Section 2.1.6.3 one of differential
privacy’s main strengths: composability. We saw that there were three types of composition;
in this survey, we focus on sequential composition, which we simply call composition.

Definition 10 (Composability). A privacy definition Def with parameter α is composable
if for any two mechanisms M1 and M2 satisfying respectively α1-Def and α2-Def, the
mechanismM (D) = (M1(D),M2(D)) satisfies α-Def for some (non-trivial) α.

3 The necessity of these were questioned in [202], where authors showed a natural notions of anonymity that contradict
them.

4 This definition must be slightly adapted for some variants, see for example Proposition 17 in Section 2.2.9.
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We highlight the properties satisfied by each variant and extension of DP in Table 2.20 in
Section 2.2.9.

2.2.1.3 Relations between definitions

When learning about a new data privacy notion, it is often useful to know what are the known
relations between this notion and other definitions. However, definitions have parameters
that often have different meanings, and whose value is not directly comparable. To capture
extensions, when a definition can be seen as a special case of another, we introduce the
following definition.

Definition 11 (Extensions). Let α-Def1 and β-Def2 be data privacy definitions. We say that
Def1 is extended by Def2, and denote is as Def1 ⊂ Def2, if for all α, there is a value of β
such that α-Def1 is identical to β-Def2.

Concerning variants, to claim that a definition is stronger than another, we adopt the concept
of ordering established in [88] using α and β as tuples, encoding multiple parameters. We
slightly changed the original definition: the original only required the second condition to
hold, which would classify any extension as a stronger variant.

Definition 12 (Relative strength of privacy definitions). Let α-Def1 and β-Def2 be data
privacy definitions. We say that Def1 is stronger than Def2, and denote it Def1 � Def2, if:

1. for all α, there is a β such that α-Def1 =⇒ β-Def2;

2. for all β, there is an α such that α-Def1 =⇒ β-Def2.

If Def1 is both stronger than and weaker than Def2, we say that the two definitions are
equivalent, and denote it Def1 ∼ Def2.

Relative strength implies a partial ordering on the space of possible definitions. On the
other hand, if two definitions are equivalent, this does not mean that they are equal: they could
be only equal up to a change in parameters. Both relations are reflexive and transitive; and
we define the symmetric counterpart of these relations as well (i.e., ≺ and ⊃). Moreover, for
brevity, we combine these two concepts in a single notation: if Def1 ⊂ Def2 and Def1 � Def2,
we say that Def2 is a weaker extension of Def1, and denote it Def1 ⊂

� Def2.
A summarizing table is presented in Section 2.2.9 (Table 2.20). For each definition, we

highlight its dimensions and its relation to other notions, and we also specify whether these
notions satisfy the privacy axioms and the composability property (X: yes, 7: no, ?: currently
unknown). In Section 2.2.9.1, we either provide a reference or a novel proof for each of these
claims.

2.2.1.4 Methodology

Whether a data privacy definition fits our description is not always obvious, so we use the
following criterion: the attacker’s capabilities must be clearly defined, and the definition
must prevent this attacker from learning about a protected property. Consequently, we do not
consider:
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• syntactic definitions, which are a property of the output data and not of the mechanism;
• variants of technical notions that are not data privacy properties;
• definitions whose only difference with DP is in the context and not in the formal

property, like the distinction between local and central models of differential privacy.

In Section 2.2.10.1, we give a list of notions that we found during our survey, and considered
to be out of scope for our work.

To find a comprehensive list of DP notions, besides the definitions we were aware of or
were suggested to us by experts, we conducted a wide literature review using two research
datasets: BASE [34] and Google Scholar [172]. The exact queries were run on 2020–06–01.
The corresponding result counts are summarized in Table 2.19.

Query (BASE) Hits

“differential privacy” relax year:[2000 to *] 130

“differential privacy” variant -relax year:[2000 to *] 115

a b

Query (Google Scholar) Hits

“differential privacy” “new notion” 224

“differential privacy” “new definition” -“new notion” 180

Table 2.19: Queries for the literature review.

First, we manually reviewed each paper and filtered them out until we had only papers
which either contained a new definition or were applying DP in a new setting. All papers
which defined a variant or extension of DP are cited in this work.

2.2.2 Quantification of privacy loss (Q)

The risk model associated to differential privacy is a worst-case property: it quantifies not
only over all possible neighboring datasets but also over all possible outputs. However, in
many real-life risk assessments, events with vanishingly small probability are ignored, or their
risk weighted according to their probability. It is natural to consider analogous relaxations,
especially since these relaxations often have better composition properties, and enable natural
mechanisms like the Gaussian mechanism to be considered private [131].

Most of the definitions within this section can be expressed using the privacy loss random
variable, first defined in [110] as the adversary’s confidence gain, so we first introduce this
concept. Roughly speaking, it measures how much information is revealed by the output of a
mechanism.
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Definition 13 (Privacy loss random variable [110]). LetM be a mechanism, and D1 and D2
two datasets. The privacy loss random variable betweenM (D1) andM (D2) is defined as:

LM(D1)/M(D2)(O) = ln
(

P [M (D1) = O]

P [M (D2) = O]

)
.

if neither P [M (D1) = O] nor P [M (D2) = O] is 0; in case only P [M (D2) = O] is zero
then LM(D1)/M(D2)(O) = ∞, otherwise LM(D1)/M(D2)(O) = −∞. When the mechanism
is clear from context, we simply write LD1/D2 .

For simplicity, we only consider the case where the set of possible outputs of the mechanism,
O, is countable; otherwise the PLRV can be reformulated using the density functions of
M (D1) andM (D2) instead of specific outputs.

Differential privacy bounds the maximum value of LD1/D2 . Instead of considering the
maximum value, which corresponds to the worst possible output, relaxations of this section
will allow a small probability of error, consider the average of the privacy loss random
variable, or describe its behavior in finer ways.

2.2.2.1 Allowing a small probability of error

The first option, whose introduction is commonly attributed to [126], relaxes the definition
of ε-indistinguishability by allowing an additional small density of probability on which the
upper ε bound does not hold. This small density, denoted δ, can be used to compensate for
outputs for which the privacy loss is larger than eε. This led to the definition of approximate
differential privacy, often simply called (ε, δ)-DP. This is, by far, the most commonly used
relaxation in the scientific literature.

Definition 14 ((ε, δ)-differential privacy [126]). Two random variables A and B are (ε, δ)-
indistinguishable, denoted A ≈ε,δ B, if for all measurable sets X of possible events:

P [A ∈ X] ≤ eε ·P [B ∈ X] + δ and P [B ∈ X] ≤ eε ·P [A ∈ X] + δ.

A privacy mechanismM is (ε, δ)-DP (or (ε, δ)-approximate DP) if for any datasets D1
and D2 that differ only on one record, and for all S ⊆ O,M (D1) ≈ε,δ M (D2).

This definition is equivalent with Max-KL stability [37], a special case of algorithmic
stability, which requires that one change in an algorithm’s inputs does not change its output
“too much”.

The δ in (ε, δ)-DP is sometimes explained as the probability that the privacy loss of the
output is larger than eε (or, equivalently, that the ε-indistinguishability formula is satisfied). In
fact, this intuition corresponds to a different definition, first introduced in [267] as probabilistic
DP, also called (ε, δ)-DP in distribution in [60]. A detailed explanation of the distinction
between the two definitions can be found in [277].

Definition 15 ((ε, δ)-probabilistic differential privacy [277]). A privacy mechanismM is
(ε, δ)-probabilistically DP (ProDP) if for any datasets D1 and D2 that differ only on one
record there is a set S 1 ⊆ O where P [M (D1) ∈ S 1] ≤ δ, such that for all measurable sets
S ⊆ O:

P [M (D1) ∈ S \S 1] ≤ eε ·P [M (D2) ∈ S \S 1] .
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It is straightforward to show that (ε, δ)-DP is stronger than (ε, δ)-ProDP (with no change
in parameters); a proof of the reverse result (with parameter change) is given in [408]. Both
definitions can be reformulated using the privacy loss random variable.

Proposition 8. A mechanismM is:

• ε-DP⇔ PO∼M(D1)

[
LD1/D2 (O) > ε

]
= 0 for all neighboring D1 and D2.

• (ε, δ)-DP ⇔ EO∼M(D1)

[
max

(
0, 1 − eε−LD1/D2 (O)

)]
≤ δ for all neighboring D1 and

D2.
• (ε, δ)-ProDP⇔ PO∼M(D1)

[
LD1/D2 (O) > ε

]
≤ δ for all neighboring D1 and D2.

Approximate and probabilistic differential privacy can be combined to form (ε, δa, δp)-
relaxed DP (RelDP) [407], which requires (ε, δa)-DP with probability at least 1 − δp.

2.2.2.2 Averaging the privacy loss

As ε-DP corresponds to a worst-case risk model, it is natural to consider relaxations to allow
for larger privacy loss for some outputs. It is also natural to consider average-case risk models:
allowing larger privacy loss values only if lower values compensate it in other cases. One
such relaxation is called Kullback-Leibler privacy [31, 88]: it considers the arithmetic mean
of the privacy loss random variable, which measures how much information is revealed when
the output of a private algorithm is observed.

Definition 16 (ε-Kullback-Leibler privacy [31, 88]). A privacy mechanismM is ε-Kullback-
Leibler private (KLPr) if for all D1, D2 differing in one record:

EO∼M(D1)

[
LD1/D2 (O)

]
≤ ε. (2.2)

Note that this formula can be expressed as DKL (M (D1) |M (D2)) ≤ ε where DKL is the
Kullback-Leibler-divergence.

ε-KL privacy considers the arithmetic mean of the privacy loss random variable or, equiva-
lently, the geometric mean of eLD1/D2 . This choice of averaging function does not attribute a
lot of weight to worst-case events, where LD1/D2 takes high values. Rényi DP extends this
idea by adding a parameter α ≥ 1, which allows controlling the choice of averaging function
by bounding the αth momentum of the privacy loss random variable.

Definition 17 ((α, ε)-Rényi differential privacy [284]). Given α > 1, a privacy mechanism
M is (α, ε)-Rényi DP (RenyiDP) if for all pairs of neighboring datasets D1 and D2:

EO∼M(D1)

[
e(α−1)LD1/D2 (O)

]
≤ e(α−1)ε.

Note that this formula can be expressed as Dα (M (D1) |M (D2)) ≤ ε where Dα is the
Rényi-divergence of order α.

This definition can be naturally extended by continuity to α = 1 (where it is equivalent to
ε-KL privacy) and α = ∞ (where it is equivalent to ε-DP). Larger values of α lead to more
weight being assigned to worst-case events: (α, ε)-Rényi DP � (α′, ε)-Rényi DP iff α > α′.
Besides α = 1 and α = ∞, Rényi DP has a simple interpretation for some values of α: α = 2
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imposes a bound on the arithmetic mean of eLD1/D2 , α = 3 imposes it on the quadratic mean,
α = 4 on the cubic mean, etc. A related technique is the moments accountant [1] which keeps
track of a bound on the moments of the privacy loss random variable during composition.

It is possible to use other divergence functions to obtain other relaxations. For example,
in [380], the authors introduce two technical definitions, binary-|χ|α DP (b-|χ|α DP) and
ternary-|χ|α DP (t-|χ|α DP), as part of a proof on amplification by sampling. Other examples
of divergences can lead to other variants, like ε-total variation privacy [31] (ε-TVPr, using
the total variance) and quantum DP [81] (QDP, using the quantum divergence).

Another possibility to average the privacy loss is to use mutual information to formalize the
intuition that any individual record should not “give out too much information” on the output
of the mechanism (or vice-versa). This is captured by ε-mutual-information DP (MIDP) [88],
which guarantees that the mutual information betweenM (D) and D(i) conditioned on D−i
is under a certain threshold. The bound is taken over all possible priors on D, which avoids
having to reason about the attacker’s background knowledge. This definition, along with
KL-privacy, are technically stronger than approximate DP, but the change in parameters was
criticized for not providing a strong enough guarantee [272].

Proposition 9. For all ε > 0, δ ≤ 1, and α ≤ 1:

• ε-DP =⇒ min{ε, ε2}-KLPr (Lemma 1 in [88])

• ε-KLPr =⇒ ε-MIDP⇒ (0,
√

2ε)-DP (Lemma 1 and 2 in [88])

• ε-DP =⇒ (α, ε)-RényiDP⇒
(
ε+ ln

(
α−1
α

)
−

ln(δ)+ln(α)
α−1 , δ

)
-DP (Theorem 21 in [26])

2.2.2.3 Controlling the tail distribution of the privacy loss

Some definitions go further than simply considering a worst-case bound on the privacy loss,
or averaging it across the distribution. They try to obtain the benefits of (ε, δ)-DP with a
smaller ε which holds in most cases, but control the behavior of the bad cases better than
(ε, δ)-DP, which allows for catastrophic privacy loss in rare cases.

The first attempt to formalize this idea was proposed in [132], where the authors introduce
concentrated DP (later renamed to mean-concentrated DP (mCoDP) in [57]). In this definition,
a parameter controls the privacy loss variable globally, and another parameter allows for
some outputs to have a greater privacy loss; while still requiring that the difference is smaller
than a Gaussian distribution. In [57], the authors show that this definition does not satisfy
the post-processing axiom, and propose another formalization of the same idea called zero-
concentrated DP (zCoDP) [57], which requires that the privacy loss random variable is
concentrated around zero.

Definition 18 ((ξ, ρ)-zero-concentrated differential privacy [57]). A mechanismM is (ξ, ρ)-
zero-concentrated DP if for all pairs of neighboring datasets D1 and D2 and all α > 1:

EO∼M(D1)

[
e(α−1)LD1/D2 (O)

]
≤ e(α−1)(ξ+ρα).

Four more variants of concentrated DP exist.
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• (ξ, ρ, δ)-approximate zero-concentrated DP [57] (AzCoDP), which relaxes (ξ, ρ)-
zCoDP by only taking the Rényi divergence on events with probability higher than
1 − δ instead of on the full distribution.

• (ξ, ρ,ω)-bounded CoDP [57] (bCoDP) relaxes (ξ, ρ)-zCoDP by requiring the inequal-
ity to hold only for α ≤ ω.

• (ρ,ω)-truncated CoDP [56] (tCoDP [56]) relaxes (0, ρ)-zCoDP in the same way.

• (ξ, τ)-truncated CoDP [81] (tCoDP [81]) requires the Rényi divergence to be smaller
than min(ξ,ατ) for all α ≥ 1.

The relations between these definitions and other notions in this section is well-understood.
Besides the special cases (e.g., (ρ,∞)-tCoDP [56] is the same as (0, ρ)-zCoDP) and the
relations that are a direct consequence of the definitions (e.g., (ξ, ρ)-zCoDP is the same as
the condition “(ξ+ ρα)-RénDP for all α > 0”), we list known relations below.

Proposition 10. For all ε > 0, δ > 0, µ > 0, τ > 0, ξ ≥ 0 and ω > 1:

• ε-DP =⇒
(
ε(eε−1)

2 , ε
)
-mCoDP (Theorem 3.5 in [132])

• ε-DP =⇒
(
0, ε

2

2

)
-zCoDP (Lemma 8.3 in [57])

• ε-DP⇐⇒ (ε, 0)-zCoDP (Lemma 3.2 in [57])

• (µ, τ)-mCoDP =⇒
(
µ − τ2

2 , τ
2

2

)
-zCoDP (Lemma 4.2 in [57])

• (ξ, ρ)-zCoDP =⇒
(
ξ+ ρ, O(

√
ξ+ 2ρ)

)
-mCoDP (Lemma 4.3 in [57])

• (ξ, ρ)-zCoDP =⇒

(
ξ+ ρ+

√
4ρ ln

(
min(1,

√
πρ)

δ

)
, δ

)
-DP (Lemma 3.5 and 3.6 in [57])

•
(
ξ+

√
ρ ln 1

δ

)
-DP =⇒

(
ξ −

ρ
4 + 5 4

√
ρ, ρ4

)
-zCoDP (Lemma 3.7 in [57])

• (ρ,ω)-tCoDP [56] ⇒ (ε̂, δ)-DP, where ε̂ = ρ+ 2
√
ρ ln 1

ρ if ln 1
δ ≤ (ω − 1)2ρ, and

ε̂ = ρω+
ln 1

δ

ω−1 otherwise (Lemma 6 in [56])

2.2.2.4 Extension

Most definitions of this section can be seen as bounding the divergence betweenM (D1)
andM (D2), for different possible divergence functions. In [31], the authors use this fact
to generalize them and define ( f , ε)-divergence DP (DivDP), which takes the particular
divergence used as a parameter f .
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Definition 19 (( f , ε)-divergence differential privacy [31]). Let f be a convex function such
as f (1) = 0. A privacy mechanismM is ( f , ε)-divergence DP if for all pairs of neighboring
datasets D1, D2:

EO∼M(D1)

[
f
(
eLD1/D2

)]
≤ ε.

An instance of this definition was presented in [118] as ( fk, ε)-divergence DP; which

requires that EO∼M(D1)

[∣∣∣∣eLD1/D2
− 1

∣∣∣∣k] ≤ εk. This definition is mainly used to prove technical

results on privacy/utility trade-offs in the local model. For any k ≤ 1, ε-DP implies ( fk, eε − 1)-
DivDP, and when k = 2, it is equivalent to

(
2, ln

(
1 + ε2

))
-RényiDP (Section 2 in [118]).

Moreover, capacity bounded differential privacy (CBDP) was introduced in [69], which
uses H-restricted f -divergence: DH

f (P|Q) = suph∈H [Ex∼P [h(x)] −Ex∼Q [ f ∗(h(x))]] where

f is a divergence, H is a family of functions, and f ∗ is the Fenchel conjugate5. In other
words, it requires the supremum condition to hold only for a selected set of functions (queries)
instead of all possible ones. The interpretation for this definition is slightly different than
other definitions in this section: H represents the possible attacks that the attacker is allowed
to perform.

Finally, most definitions in this section taking two real-valued parameters can be extended
to use a family of parameters rather than a single pair of parameters. As shown in [348]
(Theorem 2) for approximate DP, probabilistic DP, and Rényi DP, finding the tightest possible
family of parameters (for either definition) for a given mechanism is equivalent to specifying
the behavior of its privacy loss random variable entirely.

2.2.2.5 Multidimensional definitions

Allowing a small probability of error δ by using the same concept as in (ε, δ)-DP is very
common; many new DP definitions were proposed in the literature with such a parameter.
Unless it creates a particularly notable effect, we do not mention it explicitly and present the
definitions without this parameter.

Definitions in this section can be used as standalone concepts: (ε, δ)-DP is omnipresent in
the literature, and the principle of averaging risk is natural enough for Rényi privacy to be
used in practical settings, like posterior sampling [163] or resistance to adversarial inputs in
machine learning [317]. Most variants in this section, however, are only used as technical
tools to get better results on composition or privacy amplification [131, 149, 245, 380].

2.2.3 Neighborhood definition (N)

The original definition of differential privacy considers datasets differing in one record. Thus,
the datasets can differ in two possible ways: either they have the same size and differ only
on one record, or one is a copy of the other with one extra record. These two options do
not protect the same thing: the former protects the value of the records while the latter
also protects their presence in the data: together, they protect any property about a single
individual.

5 The Fenchel conjugate for a function f with a domain R is f ∗(x) = supy∈R[xy − f (y)].
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In many scenarios, it makes sense to protect a different property about their dataset, e.g.,
the value of a specific sensitive field, or entire groups of individuals. It is straightforward to
adapt DP to protect different sensitive properties: all one has to do is change the definition of
neighborhood in the original definition.

2.2.3.1 Changing the sensitive property

The original definition states that the ε-indistinguishability property should hold for “any
datasets D1 and D2 that differ only on the data of one individual”. Modifying the set of pairs
(D1, D2) such that M (D1) ≈ε M (D2) is equivalent to changing the protected sensitive
property.

Weaker notions

In DP, the difference between D1 and D2 is sometimes interpreted as “one record value is
different”, or “one record has been added or removed”. In [227], the authors formalize these
two options as bounded DP and unbounded DP. They also introduced attribute DP and bit
DP, for smaller changes within the differing record.

Definition 20 ( [227]). If a privacy mechanismM satisfiesM (D1) ≈ε M (D2) for any pair
D1, D2, where D1 can be obtained from D2 by. . .

• . . . adding or removing one record, thenM is ε-unbounded DP (uBoDP).
• . . . changing exactly one record, thenM is ε-bounded DP (BoDP).
• . . . changing one attribute in a record, thenM is ε-attribute DP (AttDP).
• . . . changing one bit of an attribute in a record, thenM is ε-bit DP (BitDP).

In [227], authors show that ε-unbounded DP implies 2ε-bounded DP, as changing a record
can be seen as deleting it and adding a new one in its place. The original definition of ε-DP is
the conjunction of ε-unbounded DP and ε-bounded DP. However, bounded DP is frequently
used in the literature: locally differentially private mechanisms, in particular, in which each
user randomizes their own data before sending it to the aggregator, typically uses bounded
DP. It is often simply called differential privacy, and sometimes renamed, like in [149], where
the authors call it per-person DP.

Variants of differential privacy that do not protect individuals, but single contributions (in
the case where the same person can contribute multiple times to a dataset), are also often
used in practice, especially for machine learning applications [271]. Some recent works also
argue that in-between definitions are appropriate: rather than protecting a single contribution
or entire users contributions, authors in [22] suggest that protecting elements that reveal
information about users, after deduplicating or clustering contributions. For example, rather
than protecting all website visits by a single user, or each visit individually, one might choose
to protect the fact that a user ever visited a website (but not whether the user visited the
same website once or many times). They call the corresponding definition element-level DP
(ELDP).

Another way to relax the neighborhood definition in DP is to consider that only certain
types of information are sensitive. For example, if the attacker learns that their target has
cancer, this is more problematic than if they learn that their target does not have cancer. This
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idea is captured in one-sided DP [231]: the neighbors of a dataset D are obtained by replacing
a single sensitive record with any other record (sensitive or not). The idea of sensitivity is
formalized by a policy P, which specifies which records are sensitive. This idea cannot be
captured simply by ε-indistinguishability, since one-sided DP is asymmetric.

Definition 21 ((P, ε)-one-sided differential privacy [231]). Given a policy P ⊆ T , a privacy
mechanismM is (P, ε)-one-sided DP (OSDP) iff for all datasets D1 and D2, where D2 has
been obtained by replacing a record t ∈ D1 ∩ P by any other record and for all S ⊆ O:

P [M (D1) ∈ S ] ≤ eε ·P [M (D2) ∈ S ] .

When P = T , this is equivalent to bounded DP. Similar ideas were proposed in multiple
papers:

• In [23], the authors propose sensitive privacy, which determines which records are sen-
sitive based on the data itself and a normality property N and a graph-based definition
of k-neighborhood, instead of using a data-independent determination.

• In [51], the authors introduce anomaly-restricted DP, which assumes that there is only
one outlier in the dataset, and that this outlier should not be protected.

Stronger notions

More restrictive definitions are also possible. First, some definitions make the definition of
neighborhood more explicit when a single person can contribute multiple times to a dataset;
this is the case for client/participant DP, defined in [271]. In [123], the authors implicitly
define (c, ε)-group privacy considers datasets that do not differ in one record, but possibly
several, to protect multiple individuals. This can also be interpreted as taking correlations into
account when using DP: DP under correlation [73] uses an extra parameter to describe the
maximum number of records that the change of one individual can influence.

These two definitions are formally equivalent; but the implicit interpretation of DP behind
them is different. (c, ε)-group privacy is compatible with the associative view under the
strong adversary assumption (the adversary knows all records except c) or the causal view (c
records are changed after the data is generated). Meanwhile, DP under correlation implicitly
considers the associative view with the independence assumption; and tries to relax that
assumption. This last approach was further developed via dependent DP [258], which uses
“dependence relationships” to describe how much the variation in one record can influence
the other records.

Definition 22 ((R, c, ε)-dependent differential privacy [258]). A privacy mechanismM is
(R, c, ε)-dependent DP (DepDP) where R is the probabilistic dependence relationship and c
is the dependence size, if for any pair of datasets D1 and D2, where D2 has been obtained
from D1 by changing one record and the corresponding at most c− 1 other records according
to R,M (D1) ≈ε M (D2).

Note that when R is the empty relation, or when c = 1, this definition is equivalent to
bounded DP: under the associative view of DP, this represents independence between records.
Similar definitions appear in [392, 393] as correlated DP (CorDP), in which correlations are
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defined by an observation on other datasets, and in in [399] as bayesian DP6 (BayDP [399]),
where the neighborhood relation is defined by an adversary having some knowledge about
correlations in the data. An extension is proposed in [256] as prior DP (PriDP) which
considers a family of adversaries instead of a single adversary.

The strongest possible variant is considered in [227], where the authors define free lunch
privacy, in which the attacker must be unable to distinguish between any two datasets, even
if they are completely different. This guarantee can be interpreted as a reformulation of
Dalenius’ privacy goal [91], which we mentioned in Section 2.1.6. As such, all mechanisms
that satisfy free lunch privacy have a near-total lack of utility.

Definition 23 (ε-free lunch privacy [227]). A privacy mechanismM satisfies ε-free lunch
privacy (FLPr) ifM (D1) ≈ε M (D2) for any pair of datasets D1, D2.

2.2.3.2 Limiting the scope of the definition

Redefining the neighborhood property can also be used to reduce the scope of the definitions.
In [349], the authors note that DP requires ε-indistinguishability of results between any
pair of neighboring datasets, but in practice, the data custodian has only one dataset D they
want to protect. Thus, they only require ε-indistinguishability between this dataset D and
all its neighbors, calling the resulting definition individual DP. An equivalent definition was
proposed in [64] as conditioned DP.

Definition 24 ((D, ε)-individual differential privacy [349]). Given a dataset D ∈ D, a privacy
mechanismM satisfies (D, ε)-individual DP (IndDP) if for any dataset D′ that differs in at
most one record from D,M (D) ≈ε M (D′).

This definition was further restricted in [379] where besides fixing a dataset D, a record t is
also fixed.

2.2.3.3 Applying the definition to other types of input

Many adaptations of differential privacy are simply changing the neighborhood definition to
protect different types of input data than datasets. A few examples follow.

• In [75, 138, 396], the authors adopted differential privacy for locations. In [138] the
authors defined location privacy, in which neighbors are datasets which differ in at
most one record, and the two differing records are at a physical distance smaller than a
given threshold. This definition also appears in [75] as DP on r-location set7. Several
more location-related differential privacy variants were defined in [291]: untrackability
(which adopts differential privacy for set of locations by protecting whether they origi-
nated from a single user or by two users), undetectability and multi user untrackability,
(which extend this idea further by not assuming both sets originated from the same
private data and to multiple users respectively).

6 There are two other notions with the same name: introduced in [248, 367], we mention them in Section 2.2.4 and 2.2.5
respectively.

7 Distinct from DP on δ-location set [396], which we mention in Section 2.2.4.



2.2 systematizing variants & extensions of differential privacy 49

• In [108, 188, 316, 329, 351, 359], the authors adopt differential privacy to graph-
structured data. In [188], authors present multiple alternative definitions, which protect
different parts of the graph: the strongest is node-DP, which protects a node and all its
edges; the weakest is edge-DP, only protects one edge; and an intermediate definition is
k-edge-DP, which protects a total of k edges and nodes. In [359], the authors introduce
out-link privacy, which protects all outgoing edges from a given node. In [329], the
author introduces QL-edged-labeled DP similar to out-link privacy, but only protecting
a predetermined subset of outgoing edges. In [316], the author introduces l1-weighted
DP, in which graph edges are weighted, and graphs are neighbors when the total weight
of their differing edges is smaller than 1; this notion was also defined implicitly in [340].
In [351], the authors define decentralized DP which extends the graph neighborhood to
two jumps. In [221], the authors introduce protected DP, which adapts DP for graphs
and guarantees that no observer can learn much about the set of edges corresponding to
any protected node while offering no guarantees for the other nodes. Finally, in [108]
the authors introduce seamless privacy, which rather than protecting characteristics
of a specific input graph, it ensures that certain pairs of queries on this graph return
similar answers.

• In [125, 129, 130, 148, 223, 382], authors adapt differential privacy to a streaming
context, where the attacker can access the mechanism’s internal states. In [125, 129,
130], authors define pan-privacy, which comes in two variants: event-level pan-privacy
(called strong DP in [382]) protects individual events, and user-level pan-privacy
protects all events associated to a single user. In [223], the authors extend the previous
idea and propose w-event privacy, which protects any event sequence occurring within
a window of at most w timestamps. In [148, 291] this was further extended to an
infinite horizon via discounted differential privacy (which keep assigning smaller-and-
smaller weights to further-and-further events) and everlasting privacy (which limit the
leakage of information users suffer, no matter how many executions a mechanism had),
respectively.

• In [375] the authors adopt differential privacy for Random Access Memory and Private
Information Retrieval. For RAM the neighborhood is defined over the sequence of
logical memory requests over time; the same notion appears in [63] as differential
obliviousness and in [11] as oblivious DP. The adaptation of neighborhood is similar in
case of PIR; a similar notion appears in [364] as ε-private PIR and in [311] as ε-DPIR.
Additionally, in [222], the authors use a similar idea to define differential privacy for
outsourced database systems.

• In [211], the authors adapt differential privacy for symbolic control systems, and
introduce word-DP and substitution-word-DP, protecting respectively pairs of words
whose Levenshtein distance is lower than a given parameter, or whose Hamming
distance is lower than a given parameter.
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• In [405], the authors adapt differential privacy for text vectors, and propose text in-
distinguishability, in which the neighborhood relationship between two word vectors
depends on their Euclidean distance.

• In [398] the authors defined set operation DP, which adopts differential privacy for set
operations where {D1, D2} and {D1, D2}

′ are neighbor if either D1 and D′1 or D2 and
D′2 are neighbors.

• In [242, 401], the authors define refinement DP and pixel DP respectively, which adopts
the definition for images with neighbors given by some transformation or metric.

• In [201], the authors adopt DP to gossip protocols to protect the privacy of information
source.

• In [307], the authors define functional DP, which adopts differential privacy for func-
tions.

• In [347], the authors define phenotypic DP, which adopts differential privacy for
genomic data, where the difference in the phenotype vector defines the neighborhood.

• In [178], the authors adapt differential privacy to recommendation systems, and define
distance-based DP, which protects not only a given user recommendation but also all
the recommendations of a given user for similar items.

• In [262], the authors adapt differential privacy to machine learning, and define differ-
ential training privacy, which quantifies the risk of membership inference of a record
with respect to a classifier and its training data.

• In [366], the authors define DP for bandit algorithms, where the neighborhood notion
is defined by changing any single reward in a multi-armed bandit game sequence.
In [41], this definition is renamed to instantaneous DP (Def 5), and few more variants
are proposed for this problem space: local DP for bandits, pan-privacy for bandits,
sequential privacy for bandits, and environment privacy for bandits.

2.2.3.4 Extensions

It is natural to generalize the variants of this section to arbitrary neighboring relationships.
One example is mentioned in [227], under the name generic DP8, where the neighboring
relation is entirely captured by a relation R between datasets.

Definition 25 ((R, ε)-generic differential privacy [227]). Given a relation R ⊆ D2, a privacy
mechanismM satisfies (R, ε)-generic DP (GcDP [227]) if for all (D1, D2) ∈ R,M (D1) ≈ε
M (D2).

8 Another definition with the same name is introduced in [225, 226], we mention it in Section 2.2.4.
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This definition is symmetric, but it can easily be modified to accommodate asymmetric
definitions like one-sided DP.

Other definitions use different formalizations to also generalize the concept of changing the
neighborhood relationship. Some (like pufferfish privacy, see Definition 35 in Section 2.2.5)
use pairs of predicates that D1 and D2 must respectively satisfy to be neighbors. Others
(like coupled-worlds privacy, see Definition 44 in Section 2.2.7) use private functions taking
datasets as input, and define neighbors to be datasets that have a different output according
to this private function. Others use a distance function between datasets, and neighbors are
defined as datasets a distance lower than a given distance threshold; this is the case for
DP under a neighborhood (DPUN), introduced in [145], adjacent DP (AdjDP), introduced
in [235]9, constrained DP (ConsDP), introduced in [409] (where the distance captures a
utility-related constraint), and distributional privacy10 (DlPr [409]), also introduced in [409]
(with additional constraints on the neighborhood definition: neighboring datasets must be
part of a fixed set and have elements in common). This distance can also be defined as
the sensitivity of the mechanism, like in sensitivity-induced DP [335] (SIDP), or implicitly
defined by a set of constraints, like what is done implicitly in [227] via induced neighbors DP
(INDP).

One notable instantiation of generic DP is blowfish privacy [193]. Its major building
blocks are a policy graph G, that specifies which pairs of domain values in T should not be
distinguished between by an adversary; and a set of constraints Q that specifies the set of
possible datasets that the definition protects. It was inspired by the Pufferfish framework [228]
(see Definition 35 in Section 2.2.5), but the attacker is not assumed to have uncertainty over
the data: instead, it models an attacker whose knowledge is a set of deterministic constraints
on the data.

Definition 26 ((G, Q, ε)-blowfish privacy [187, 193]). Given a policy graph G ∈ T 2 and a
set of constraints Q, a privacy mechanismM satisfies (G, ε)-blowfish privacy (BFPr) if for
all datasets D1 and D2 that satisfy constraints Q and differ in only one element i such that
(D1(i), D2(i)) ∈ G,M (D1) ≈ε M (D2).

As noted in [193], a mechanism satisfies ε-bounded DP if and only if satisfies (K,In, ε)-
blowfish privacy, where K is the complete graph, and In is any datasets of size n. A particular
instantiation of this idea is explored in [227] as induced DP, where the definition of neighbors
is induced by a set of constraints.

2.2.3.5 Multidimensional definitions

Modifying the protected property is orthogonal to modifying the risk model implied by the
quantification of privacy loss: it is straightforward to combine these two dimensions. Indeed,
many definitions mentioned in this section were actually introduced with a δ parameter
allowing for a small probability of error. One particularly general example is adjacency
relation divergence DP [218], which combines an arbitrary neighborhood definition (like in
generic DP) with an arbitrary divergence function (like in divergence DP).

9 Originally simply called “differential privacy” by its authors.
10 Another definition with the same name is introduced in [53, 333], we mention it in Section 2.2.4.
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As the examples in Section 2.2.3.3 show, it is very common to change the definition of
neighborhood in practical contexts to adapt what aspect of the data is protected. Further, local
DP mechanisms like RAPPOR [141] implicitly use bounded DP: the participation of one
individual is not secret, only the value of their record is protected. Variants that limit the scope
of the definition to one particular dataset or user, however, provide few formal guarantees and
do not seem to be used in practice.

2.2.4 Variation of privacy loss (V)

In DP, the privacy parameter ε is uniform: the level of protection is the same for all protected
users or attributes, or equivalently, only the level of risk for the most at-risk user is considered.
In practice, some users might require a higher level of protection than others or a data
custodian might want to consider the level of risk across all users, rather than only considering
the worst case. Some definitions take this into account by allowing the privacy loss to vary
across inputs, either explicitly (by associating each user to an acceptable level of risk), or
implicitly (by allowing some users to be at risk, or averaging the risk across users).

2.2.4.1 Varying the privacy level across inputs

In Section 2.2.3, we saw how changing the definition of the neighborhood can be used to
adapt the definition of privacy and protect different aspects of the input data. However, the
privacy protection in those variants is binary: either a given property is protected, or it was not.
A possible option to generalize this idea further is to allow the privacy level to vary across
possible inputs.

One natural example is to consider that some users might have higher privacy requirements
than others, and make the ε vary according to which user differs between the two datasets.
This is done in personalized DP, a notion first defined informally in [302], then independently
in [134, 165, 212, 261]. An equivalent notion is also defined in [10] as heterogeneous DP,
while a location-based definition is presented in [97] as personalized location DP.

Definition 27 (Ψ-personalized differential privacy [212]). A privacy mechanismM provides
Ψ-personalized DP (PerDP) if for every pair of neighboring datasets (D, D−i) and for all
sets of outputs S ⊆ O:

P [M (D−i) ∈ S ] ≤ eΨ(D(i))P [M (D) ∈ S ]

where Ψ is a privacy specification: Ψ : T → R+ maps the records to personal privacy
preferences and Ψ (D(i)) denotes the privacy preference of the i-th record.

As shown in [89, 212], ε-DP implies Ψ-PerDP, where Ψ(t) = ε for all t ∈ T ; and if the
definition is modified to become symmetric, Ψ-PerDP implies ε-DP where ε = maxt Ψ(t).

This definition can be seen as a refinement of the intuition behind one-sided DP, which
separated records into sensitive and non-sensitive ones. The idea of making the privacy level
vary across inputs can be generalized further, by also making the privacy level depend on the
entire dataset, and not only in the differing record. This is done in [263], where the authors
define tailored DP.
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Definition 28 (Ξ-tailored differential privacy [263]). A mechanismM satisfies Ξ-tailored
differential privacy (TaiDP) for Ξ : T ×D → R∞0 if for any dataset D,M (D) ≈ε(D(i),D)

M (D−i).

This concept can be applied to strengthen or weaken the privacy requirement for a record
depending on whether they are an outlier in the dataset. In [263], the authors formalize
this idea and introduce outlier privacy, which tailors an individual’s protection level to
their “outlierness”. Other refinements are also introduced in [263]: simple outlier privacy
(SOPr), simple outlier DP (SODP), and staircase outlier privacy (SCODP). A similar idea
was explored in [216], which introduced pareto DP (ParDP): it utilizes a pareto distribution
of parameters (p, r) to separate a large number of low-frequency individuals from a small
number of high-frequency, and the sensitivity is calculated based on only the low-frequency
individuals.

Finally, varying the privacy level across inputs also makes sense in continuous scenarios,
where the neighborhood relationship between two datasets is not binary, but quantified. This
is, for example, the case for ε-geo-indistinguishability [15], where two datasets D1 and D2
are considered r-neighbors if the only different record between D1 and D2 are at a distance r
of each other, and the ε grows linearly with r.

2.2.4.2 Randomizing the variation of privacy levels

Varying the privacy level across inputs can also be done in a randomized way, by guaranteeing
that some random fraction of users have a certain privacy level. One example is proposed
in [185] as random DP: the authors note that rather than requiring DP to hold for any possible
datasets, it is natural to only consider realistic datasets, and allow “edge-case” or very
unrealistic datasets to not be protected. This is captured by generating the data randomly, and
allowing a small proportion γ of cases to not satisfy the ε-indistinguishability property.

Definition 29 ((π, γ, ε)-random differential privacy [185]). Let π be a probability distribution
on T , D1 a dataset generated by drawing n i.i.d. elements in π, and D2 the same dataset as
D1, except one element was changed to a new element drawn from π. A mechanismM is
(π, γ, ε)-random DP (RanDP) ifM (D1) ≈ε M (D2), with probability at least 1 − γ on the
choice of D1 and D2.

The exact meaning of “with probability at least 1 − γ on the choice of D1 and D2” can
vary slightly. In [184] and in [270], the authors introduce predictive DP (PredDP) and
model-specific DP respectively, which quantify over all possible choices of D1, and picks
D2 randomly in the neighborhood of D1. In [111], D1 and D2 are both taken out of a set of
density larger than 1 − γ, and the authors call this definition generalized DP (GdDP). The
distribution generating the dataset is also not always assumed to be generating i.i.d. records;
we denote the corresponding parameter by θ.

Random DP might look similar to probabilistic DP: in both cases, there is a small probability
that the privacy loss is unbounded. On the other hand, they are very different: in random DP,
this probability is computed inputs of the mechanisms (i.e., users or datasets), for probabilistic
DP, it is computed across mechanism outputs. Also similarly to probabilistic DP, excluding
some cases altogether creates definitional issues: random DP does not satisfy the convexity
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axiom (see Proposition 15 in Section 2.2.9). We postulate that using a different tool to allow
some inputs to not satisfy the mechanism, similar to approximate DP or Rényi DP, could
solve this problem.

Usually, data-generating distributions are used for other purposes: they typically model
an adversary with partial knowledge. However, definitions in this section still compare
the outputs of the mechanisms given fixed neighboring datasets: the only randomness in
the indistinguishability property comes from the mechanism. By contrast, definitions of
Section 2.2.5 compare the output of the mechanism on a random dataset, so the randomness
comes both from the data-generating distribution and the mechanism.

2.2.4.3 Multidimensional definitions

As varying the privacy level or limiting the considered datasets are two distinct way of
relaxing differential privacy, it is possible to combine them with the previously mentioned
dimensions.

Combination with N

The definitions described in Section 2.2.3 (e.g., generic DP or blowfish privacy) have the same
privacy constraint for all neighboring datasets. Thus, they cannot capture definitions that vary
the privacy level across inputs. However, both ideas can be naturally captured together via
distance functions. In [67], the authors introduce dD-privacy, in which the function dD takes
both datasets as input, and returns the corresponding maximal privacy loss (the ε) depending
on the difference between the two datasets.

Definition 30 (dD-privacy [67]). Let dD : D2 → R∞. A privacy mechanismM satisfies
dD-privacy (dD-Pr) if for all pairs of datasets D1, D2 and all sets of outputs S ⊆ O:

P [M (D1) ∈ S ] ≤ edD(D1,D2) ·P [M (D2) ∈ S ] .

When dD is proportional to the Hamiltonian difference between datasets, this is equivalent
to ε-DP. In dD-privacy, the dD function specifies both the privacy parameter and the definition
of neighborhood: it can simply return∞ on non-neighboring datasets, and vary the privacy
level across inputs for neighboring datasets. In the original definition, the authors impose
that dD is symmetric, but this condition can also be relaxed to allow dD-privacy to extend
definitions like one-sided DP.

Equivalent definitions of dD-privacy also appeared in [138] as l-privacy, and in [219]
as extended DP. Several other definitions, such as weighted DP [322] (WeiDP), smooth
DP [31] (SmoDP) and earth mover’s privacy [151] (EMDP), can be seen as particular instan-
tiations of dD-privacy for specific functions d measuring the distance between datasets.
This is also the case for some definitions tailored for location privacy, like geo-graph-
indistinguishability [357], which specifically applies to network graphs.

Random DP can also be combined with changing the neighborhood definition: in [396],
the authors define DP on a δ-location set11, for which the neighborhood is defined by a set of
“plausible” locations around the true location of a user. A notable definition using the same

11 Distinct from DP on r-location set [75], which we mention in Section 2.2.3.
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combination of dimensions is distributional privacy12, introduced in [53, 333]: it combines
random DP (for a large family of distributions) and free lunch privacy.

Definition 31 ((ε, γ)-distributional privacy [53, 333]). An algorithm M satisfies (ε, γ)-
distributional privacy (DlPr [53, 333]) if for any distribution π over possible tuples, if D1, D2 ∈

D are picked by randomly drawing a fixed number n of elements from π without replacement,
then with probability at least 1 − γ over the choice of D1 and D2,M (D1) ≈ε M (D2).

Interestingly, this definition captures an intuition similar to the variants in Section 2.2.7:
the adversary can only learn properties of the data-generating distribution, but not about
particular samples (except with probability lower than γ). The authors also prove that ifM is
(ε, γ)-DlPr and γ = o( 1

n2 ), where n is the size of the dataset being generated, thenM is also
ε-DP.

Combination with Q

Different risk models, like the definitions in Section 2.2.2, are also compatible with varying
the privacy parameters across inputs. For example, in [234], the author proposes endogenous
DP (EndDP), which is a combination of (ε, δ)-DP and personalized DP. Similarly, pseudo-
metric DP (PsDP), defined in [106], is a combination of dD-privacy and (ε, δ)-DP; while
extended divergence DP (EDivDP), defined in [218], is a combination of dD-privacy and
divergence DP.

Randomly limiting the scope of the definition can also be combined with ideas from the
previous sections. For example, in [367], the authors introduce weak Bayesian DP (WBDP),
which combines random DP and approximate DP. In [381], the authors introduce on average
KL privacy, which uses KL-divergence as quantification metric, but only requires the property
to hold for an “average dataset”, like random DP; a similar notion appears in [150] as average
leave-one-out KL stability. In [92, 367], the authors introduce Bayesian DP13 (BayDP [367])
and privacy at risk (PAR) respectively; both definitions combine random DP with probabilistic
DP, with slightly different approaches: the former quantifies over all possible datasets and
changes one fixed record randomly, while the latter selects both datasets randomly, conditioned
on these datasets being neighbors.

In [225], Kifer et al. go further and generalize the intuition from generic DP, introduced
in Section 2.2.3, and generalize the indistinguishability condition entirely. The resulting
definition is also called generic differential privacy.

Definition 32 ((R, M)-generic differential privacy [225, 226]). A privacy mechanism M
satisfies (R, M)-generic DP (GcDP [225]) if for all measurable sets S ⊆ O and for all
(D1, D2) ∈ R:

MD1,D2 (P [M (D1) ∈ S ]) ≥ P [M (D2) ∈ S ] MD1,D2 (P [M (D1) < S ]) ≥ P [M (D2) < S ]

where MD1,D2 : [0, 1] → [0, 1] is a concave function continuous on (0, 1) such as MD1,D2 (1) =
1.

12 Another definition with the same name is introduced in [409], we mention it in Section 2.2.3.
13 There are two other notions with the same name: introduced in [248, 399], we mention them in Section 2.2.3 and 2.2.5

respectively.
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The privacy relation R is still the generalization of neighborhood and the privacy predicate
is the generalization of the ε-indistinguishability to arbitrary functions. In particular, it can
encompass all variants of described in Section 2.2.2 in addition to the ones in this section:
for example, if MD1,D2 (x) = min (1, xeε + δ, 1 − (1 − x − δ)e−ε) holds for for all D1 and
D2, then this is equivalent to (ε, δ)-DP. This definition was an attempt at finding the most
generic definition that still satisfies privacy axioms: another extension defined in the same
work, abstract DP (AbsDP) is even more generic, but no longer satisfies the privacy axioms.

Definitions in this section are particularly used in the context of local DP14 and in particular
for applications to location privacy: various metrics have been discussed to quantify how
indistinguishable different places should be to provide users of a local DP mechanism with
meaningful privacy protection [68].

2.2.5 Background knowledge (B)

In differential privacy, the attacker is implicitly assumed to have full knowledge of the dataset:
their only uncertainty is about their target. This implicit assumption is also present for the
definitions of the previous dimensions: indeed, the attacker has to distinguish between two
fixed datasets D1 and D2. The only source of randomness in ε-indistinguishability comes
from the mechanism itself. In many cases, this assumption is unrealistic, and it is natural to
consider weaker adversaries, who do not have full background knowledge. One of the main
motivations to do so is to use significantly less noise in the mechanism [116].

The typical way to represent this uncertainty formally is to assume that the input data
comes from a certain probability distribution (named data evolution scenario in [228]): the
randomness of this distribution models the attacker’s uncertainty. Informally, the more random
this probability distribution is, the less knowledge the attacker has. However, the definition
that follows depends whether DP is considered with the associative or the causal view. In the
associative view, the sensitive property changes before the data is generated: it conditions the
data-generating probability distribution. In the causal view, however, the sensitive property is
only changed after the data is generated. The two options lead to very distinct definitions.

2.2.5.1 Conditioning the output on the sensitive property

Using a probability distribution to generate the input data means that the ε-indistinguishability
property cannot be expressed between two fixed datasets. Instead, one natural way to express
it is to condition this distribution on some sensitive property. The corresponding notion,
noiseless privacy15 was first introduced in [116] and formalized in [46].

Definition 33 ((Θ, ε)-noiseless privacy [46, 116]). Given a family Θ of probability distri-
bution onD, a mechanismM is (Θ, ε)-noiseless private (NPr) if for all θ ∈ Θ, all i and all
t, t′ ∈ T :

M (D)|D∼θ,D(i)=t ≈ε M (D)|D∼θ,D(i)=t′ .

14 For details, see Section 2.2.10.2.
15 Another definition with the same name is introduced in [147], we mention it in Section 2.2.10.1.
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In the original definition, the auxiliary knowledge of the attacker is explicitly pointed out in
an additional parameter. As we show in Section 3.1.2.1 after Definition 49, in the case where
there is no δ of (ε, 0)-DP, this syntactic add-on is not necessary, so we omitted it here.

This definition follows naturally from considering the associative view of DP with the
strong adversary assumption, and attempting to relax this assumption. The exact way to
model the adversary’s uncertainty can be changed; for example DP under sampling [255], an
instance of noiseless privacy, models it using random sampling.

This definition was not the first attempt at formalizing an adversary with partial background
knowledge. In [264], authors define ε-privacy, which represents the partial knowledge as a
Dirichlet distribution (instead of an arbitrary distribution), whose parameters are interpreted as
characteristics of the attacker. However, this definition imposes a condition on the output, but
not on the mechanism which produced the output. As such, it does not offer strong semantic
guarantees like the other definitions presented in this survey.

2.2.5.2 Removing the effect of correlations in the data

In [36], however, the authors argue that in the presence of correlations in the data, noiseless
privacy can be too strong, and make it impossible to learn global properties of the data. Indeed,
if one record can have an arbitrarily large influence on the rest of the data, conditioning on
the value of this record can lead to very distinguishable outputs even if the mechanism only
depends on global properties of the data. To fix this problem, they propose distributional DP
(DistDP), an alternative definition that that only conditions the data-generating distribution
on one possible value of the target record, and quantifies the information leakage from the
mechanism. DistDP uses a simulator, similarly to variants introduced in Section 2.2.7.

As we show later, this creates definitional issues in the presence of partial knowledge.
These issues are discussed in length in Section 3.1.2, where we also introduce an alternative
definition that captures the same intuition without encountering the same problems: causal
DP.

Definition 34 ((Θ, ε)-causal differential privacy). Given a family Θ of probability distri-
butions on D, a mechanismM satisfies (Θ, ε)-causal DP (CausDP) if for all probability
distributions θ ∈ Θ, for all i and all t, t′ ∈ T :

M (D)|D∼θ,D(i)=t ≈ε M (Di→t′ )|D∼θ,D(i)=t .

where Di→t′ is the dataset obtained by changing the i-th record of D into t′.

In this definition, one record is changed after the dataset has been generated, so it does not
affect other records through dependence relationships. These dependence relationships are
the only difference between noiseless privacy and causal DP: as we show in Proposition 22 in
Section 3.1.2.2, when each record is independent of all others, this definition is equivalent to
noiseless privacy.

2.2.5.3 Multidimensional definitions

Limiting the background knowledge of an attacker is orthogonal to the dimensions introduced
previously: one can modify the risk model, introduce different neighborhood definitions,
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or even vary the privacy parameters across the protected properties along with limiting the
attacker’s background knowledge.

Combination with Q

Modifying the risk model while limiting the attacker’s background knowledge has interesting
consequences. In Section 3.1.3, we show that two options are possible: either consider the
partial knowledge as additional information given to the attacker or let the attacker influence
the partial knowledge. This distinction between an active and a passive attacker does not
matter if only the worst-case scenario is considered, like in noiseless privacy. However,
under different risk models, such as allowing a small probability of error, they lead to two
different definitions: active partial knowledge DP (APKDP) and passive partial knowledge
DP (PPKDP). Both definitions are introduced and discussed in more detail in Section 3.1.3.

To model an active attacker, APKDP quantifies over all possible values of the partial
knowledge. It was first introduced in [36, 46] as noiseless privacy, with an additional δ
parameter. We reformulate it to clarify that it implicitly assumes an active attacker. One
specialization of this definition is DP under sampling [255] (DPuS), which mandates DP to
be satisfied after a random sampling is applied to the dataset. The authors use this definition to
show that applying k-anonymity to a randomly sampled dataset provides differential privacy;
but this definition could also be used on its own, to model the attacker’s uncertainty using a
randomly sampled distribution.

PPKDP is strictly weaker: it models a passive attacker, who cannot choose their partial
knowledge, and thus cannot influence the data. In this context, δ does not only apply to the
output of the mechanism, but also to the value of the partial knowledge.

Causal DP can also be adapted to a risk model similar to (ε, δ)-DP: in [58], authors
introduce a similar notion to causal DP as inherit DP (InhDP), with the small difference
that the second dataset is obtained by removing one record from the first dataset, instead
of replacing it; and (ε, δ)-indistinguishability is used. The authors also define empirical
DP [58]16, which is identical, except the empirical distribution is used instead of the actual
data distribution, in context where the latter is unknown. In both cases, the influence of δ on
the attacker model is unclear.

Combination with N

Modifying the neighborhood definition is simpler: it is clearly orthogonal to the dimensions
introduced in this section. In all definitions of this section so far, the two possibilities between
which the adversary must distinguish are similar to bounded DP. This can easily be changed
to choose other properties to protect from the attacker. This is done in pufferfish privacy [228],
which extends the concept of neighboring datasets to neighboring distributions of datasets.

Definition 35 ((Θ, Φ, ε)-pufferfish privacy [228]). Given a family of probability distributions
Θ onD, and a family of pairs of predicates Φ on datasets, a mechanismM verifies (Θ, Φ, ε)-
pufferfish privacy (PFPr) if for all distributions θ ∈ Θ and all pairs of predicates (φ1, φ2) ∈
Φ:

M (D)|D∼θ,φ1(D) ≈ε M (D)|D∼θ,φ2(D)

16 Another definition with the same name is introduced in [5], we mention it in Section 2.2.10.1.
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Pufferfish privacy extends the concept of neighboring datasets to neighboring distributions
of datasets; starting with a set of data-generating distributions, then conditioning them on
sensitive attributes. The result compares pairs of distributions encompasses noiseless privacy,
as well as other notions. For example, it captures bayesian DP17 (BayDP [248]), introduced
in [248], in which neighboring dataset have up to k fixed records in common and all other
records are generated randomly from a distribution π.

The same idea can be formalized by comparing pairs of distributions directly. This is done
in [206, 219] via distribution privacy (DnPr). The two formalisms are equivalent: an arbitrary
pair of distributions can be seen as a single distribution, conditioned on the value of a secret
parameter. Distribution privacy was instantiated in [162] via profile-based DP (PBDP), in
which the attacker tries to distinguish between different probabilistic user profiles.

Further relaxations encompassing the introduced dimensions are probabilistic distribution
privacy [219] (PDnPr), a combination of distribution privacy and probabilistic DP, extended
distribution privacy [219] (EDnPr), a combination of distribution privacy and dD-privacy,
divergence distribution privacy [218] (DDnPr), a combination of distribution privacy, and
extended divergence distribution privacy [218] (EDDnPr), which combines the latter two
definitions. Finally, divergence distribution privacy with auxiliary inputs [218] considers the
setting where the attacker might not know the input probability distribution perfectly.

Definitions of this section are an active area of research; a typical question is to quantify in
which conditions deterministic mechanisms can provide some level of privacy. However, they
are not used a lot in practice, likely because of their brittleness: if the assumptions about the
attacker’s limited background knowledge are wrong in practice, then the definitions do not
provide any guarantee of protection.

2.2.6 Change in formalism (F)

The definition of differential privacy using ε-indistinguishability compares the distribution
of outputs given two neighboring inputs. This is not the only way to capture the idea that a
attacker should not be able to gain too much information on the dataset. Other formalisms
have been proposed, which model the attacker more explicitly.

One such formalism reformulates DP in terms of hypothesis testing by limiting the type
I and the type II error of the hypothesis that the output O of a mechanism originates from
D1 (instead of D2). Other formalisms model the attacker explicitly, by formalizing their
prior belief as a probability distribution over all possible datasets. This can be done in two
distinct ways. Some variants consider a specific prior (or family of possible priors) of the
attacker, implicitly assuming a limited background knowledge, like in Section 2.2.5. We show
that these variants can be interpreted as changing the prior-posterior bounds of the attacker.
Finally, rather than comparing prior and posterior, a third formalism compares two possible
posteriors, quantifying over all possible priors.

17 There are two other notions with the same name: introduced in [367, 399], we mention them in Section 2.2.3 and 2.2.4
respectively.
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Definitions in this section provide a deeper understanding of the guarantees given by
differential privacy, and some of them lead to tighter and simpler theorems on differential
privacy, like composition or amplification results.

2.2.6.1 Hypothesis testing

First, differential privacy can be interpreted in terms of hypothesis testing [213, 385]. In this
context, an adversary who wants to know whether the output O of a mechanism originates
from D1 (the null hypothesis) or D2 (the alternative hypothesis). Calling S the rejection
region, the probability of false alarm (type I error), when the null hypothesis is true but
rejected, is PFA = P [M (D1) ∈ S ]. The probability of missed detection (type II error),
when the null hypothesis is false but retained, is PFA = P [M (D2) ∈ O/S ].

It is possible to use these probabilities, to reformulate DP: a mechanism is ε-DP iff for all
S ⊆ O, PFA + eεPMD ≥ 1 and eεPFA + PMD ≥ 1; or equivalently, iff PFA + PMD ≥

2
1+eε .

Similarly, a mechanism is (ε, δ)-DP iff (PFA, PMD) = {(α, β) ∈ [0, 1] × [0, 1]|(1 − α ≤
eεβ+ δ)}.

This hypothesis testing interpretation was used in [113] to define f -differential privacy,
which avoids difficulties associated with divergence based relaxations. Specifically, its com-
position theorem is lossless as it provides a computationally tractable tool for analytically
approximating the privacy loss. Moreover, there is a general duality between f -DP and infinite
collections of (ε, δ)-DP guarantees.

Definition 36 ( f -differential privacy [113]). Let f : [0, 1] → [0, 1] be a convex, continuous,
and non-increasing function such that for all x ∈ [0, 1], f (x) ≤ 1 − x. A privacy mechanism
M satisfies f -differential privacy ( f -DP) if for all neighboring D1, D2 and all x ∈ [0, 1]:

inf
S

{
1 −P [M (D2) ∈ S ] |P [M (D1) ∈ S ] ≤ x

}
≥ f (x).

Here, S is the rejection region; and the infimum is the trade-off function betweenM (D1)
andM (D2). The authors also introduce Gaussian differential privacy (GaussDP) as an in-
stance of f -differential privacy, which tightly bounds from below the hardness of determining
whether an individual’s data was used in a computation than telling apart two shifted Gaussian
distributions.

2.2.6.2 Changing the shape of the prior-posterior bounds

As we mentioned in Section 2.1.6.2, differential privacy can be interpreted as giving a bound
on the posterior of a Bayesian attacker as a function of their prior. This is exactly the case in
indistinguishable privacy (IndPr), an equivalent reformulation of differential privacy defined
in [260]. Assuming that the attacker is trying to distinguish between options D = D1 and
D = D2, where D1 corresponds to the option “t ∈ D” and D2 to “t < D”, we end up with
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a bound on the posterior probability depending on the prior probability that we derived in
Section 2.1.6.2 (Proposition 1)18:

P [t ∈ D]

eε + (1 − eε)P [t ∈ D]
≤ P [t ∈ D

∣∣∣M (D) = O] ≤
eε ·P [t ∈ D]

1 + (eε − 1)P [t ∈ D]

We visualize these bounds on the top-left graph of Figure 2.8.
Some variants of differential privacy use this idea in their formalism, rather than obtaining

the posterior bound as a corollary to the classical DP definition. For example, positive
membership privacy [254] requires that the posterior does not increase too much compared to
the prior. Like noiseless privacy, it assumes an attacker with limited background knowledge.

Definition 37 ((Θ, ε)-positive membership privacy [254]). A privacy mechanismM provides
(Θ, ε)-positive membership privacy (PMPr) if for any distribution θ ∈ Θ, any record t ∈ D
and any S ⊆ O:

PD∼θ [t ∈ D|M (D) ∈ S ] ≤ eεPD∼θ [t ∈ D]

PD∼θ [t < D|M (D) ∈ S ] ≥ e−εPD∼θ [t < D] .

Note that this definition is asymmetric: the posterior is bounded from above, but not from
below. In the same paper, the authors also define negative membership privacy (NMPr),
which provides the symmetric lower bound, and membership privacy19 (MPr), which is the
conjunction of positive and negative membership privacy. They show that this definition
can represent differential privacy (in its bounded and unbounded variants), as well as other
definitions like differential identifiability [244] and sampling DP [253, 255], which we
mention in Section 2.2.10.1. Bounding the ratio between prior and posterior by eε is also
done in the context of location privacy: in [115], authors define ε-DP location obfuscation,
which formalizes the same intuition as membership privacy.

A previous attempt at formalizing the same idea was presented in [326] as adversarial
privacy. This definition is similar to positive membership privacy, except only the first relation
is used, and there is a small additive δ as in approximate DP. We visualize the corresponding
bounds on the third figure of Figure 2.8.

Definition 38 ((Θ, ε, δ)-adversarial privacy [326]). An algorithmM is (Θ, ε, δ)-adversarial
private (AdvPr) if for all S ⊆ O, tuples t, and distributions θ ∈ Θ:

PD∼θ [t ∈ D|M (D) ∈ S ] ≤ eε ·PD∼θ [t ∈ D] + δ.

Adversarial privacy (without δ) was also redefined in [391] as information privacy20.
Finally, aposteriori noiseless privacy is a similar variant of noiseless privacy introduced

in [46]; the corresponding bounds can be seen on the last figure of Figure 2.8.

18 Note that the original formalization used in [260] was more abstract, and it used polynomially bounded adversaries,
which we introduce in Section 2.2.8.

19 Another definition with the same name is introduced in [336], we mention it in Section 2.2.1.4.
20 Another definition with the same name is introduced in [119], we mention it later in this section.
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Definition 39 ((Θ, ε)-aposteriori noiseless privacy [46]). A mechanism M is said to be
(Θ, ε)-aposteriori noiseless private (ANPr) if for all θ ∈ Θ, all S ⊆ O and all i:

D(i)|D∼θ,M(D)∈S ≈ε D(i)|D∼θ.

We visualize the prior/posterior bounds for these various definitions in Figure 2.8.
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Figure 2.8: From left to right and top to bottom, using ε = ln 3: posterior-prior bounds in differential
privacy, positive membership privacy, adversarial privacy (with δ = 0.05) and aposteriori
noiseless privacy.

2.2.6.3 Comparing two posteriors

In [217], the authors propose an approach that captures an intuitive idea proposed by Dwork
in [122]: “any conclusions drawn from the output of a private algorithm must be similar
whether or not an individual’s data is present in the input or not”. They define semantic
privacy: instead of comparing the posterior with the prior belief like in DP, this bounds the
difference between two posterior belief distributions, depending on which dataset was secretly
chosen. The distance chosen to represent the idea that those two posterior belief distributions
are close is the statistical distance. One important difference between the definitions in the
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previous subsection is that semantic privacy quantifies over all possible priors: like in DP, the
attacker is assumed to have arbitrary background knowledge.

Definition 40 (ε-semantic privacy [158, 217]). A mechanismM is ε-semantically private
(SemPr) if for any distribution over datasets θ, any index i, any S ⊆ O, and any set of datasets
X ⊆ D: ∣∣∣PD∼θ [D ∈ X

∣∣∣M (D) ∈ S ] −PD∼θ [D ∈ X
∣∣∣M (D−i) ∈ S ]

∣∣∣ ≤ ε.

A couple of other definitions also compare posteriors directly: inferential privacy [164] is
a reformulation of noiseless privacy, and range-bounded privacy [121] (RBPr) requires that
two different values of the PLRV are close to each other (instead of being between centered
around zero like in ε-DP). It is equivalent to ε-DP up to a change in parameters, and is used
as a technical tool to prove composition results.

2.2.6.4 Multidimensional definitions

Definitions that limit the background knowledge of the adversary explicitly formulate it as
a probability distribution. As such, they are natural candidates for Bayesian reformulations.
In [391], the authors introduce identity DP, which is an equivalent Bayesian reformulation
of noiseless privacy. Another example is inference-based causal DP, which we define in
Definition 52 in Section 3.1.2.2. It is similar to aposteriori noiseless DP, except it uses causal
DP instead of noiseless DP.

Further, it is possible to consider different definitions of neighborhood. In [119], authors
introduce information privacy21, which can be seen as a posteriori noiseless privacy combined
with free lunch privacy: rather than only considering the knowledge gain of the adversary on
one particular user, it considers its knowledge gain about any possible group of values of the
dataset.

Definition 41 ((Θ, ε)-information privacy [119]). A mechanismM satisfies (Θ, ε)-information
privacy (InfPr) if for all probability distributions θ ∈ Θ, all D ∈ D and all O ∈ O,
D|D∼θ ≈ε D|D∼θ,M(D)=O.

The authors further prove that if Θ contains a distribution whose support is D, then
(Θ, ε)-InfPr implies 2ε-DP.

Apart from the hypothesis testing reformulations, which can be used to improve compo-
sition and amplification results, the definitions in this section mostly appear in theoretical
research papers, to provide a deeper understanding of guarantees offered by DP and its
alternatives. They do not seem to be used in practical applications.

2.2.7 Relativization of the knowledge gain (R)

A differentially private mechanism does not reveal more than a bounded amount of proba-
bilistic information about a user. This view does not explicitly take into account other ways
information can leak, like side-channel functions or knowledge about the structure of a social

21 Another definition with the same name is introduced in [391], we mention it earlier in this section.
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network. We found two approaches that attempt to include such auxiliary functions in DP
variants. One possibility is to weaken DP by allowing a certain amount of leakage; another
option is to explicitly forbid the mechanism to reveal more than another function, considered
to be safe for release.

2.2.7.1 Taking into account auxiliary leakage function

In [257], authors define bounded leakage DP, which quantifies the privacy that is maintained
by a mechanism despite bounded, additional leakage of information by some leakage function.
Interestingly, this leakage function P shares the randomness of the privacy mechanism: it can,
for example, capture side-channel leakage from the mechanism’s execution. In the formal
definition of this DP variant, the randomness is explicit: the privacy mechanism and the
leakage takes the random bits r ∈ {0, 1}∗ as an additional parameter.

Definition 42 ((P, ε, δ)-bounded leakage differential privacy [257]). Let P : D× {0, 1}∗ be a
leakage function. A privacy mechanismM is (P, ε, δ)-bounded leakage differentially private
(BLDP) if for all pairs of neighboring datasets D1 and D2, all outputs OP of P such that
P [P (D1, r) = OP] , 0 and P [P (D2, r) = OP] , 0, and all sets of outputs S ⊆ O:

P [M (D1, r) ∈ S
∣∣∣ P (D1, r) = OP] ≤ eε ·P [M (D2, r) ∈ S

∣∣∣ P (D2, r) = OP] + δ

where the randomness is taken over the random bits r.

As expected, if there is no leakage (P is a constant function), this is simply (ε, δ)-DP.
The authors also show that it is closed for post-processing and composable. Furthermore, if
the privacy mechanism is independent from the leakage function, it is strictly weaker than
differential privacy.

2.2.7.2 Borrowing concepts from zero-knowledge proofs

When using the associative interpretation with the independence assumption, it is unclear
how to adapt DP to correlated datasets like social networks: data about someone’s friends
might reveal sensitive information about this person. The causal interpretation of DP does not
suffer from this problem, but how to adapt the associative view to such correlated contexts?
Changing the definition of the neighborhood is one possibility (see Section 2.2.3.1), but it
requires knowing in advance the exact impact of someone on other records. A more robust
option is to impose that the information released does not contain more information than
the result of some predefined algorithms on the data, without the individual in question. The
method for formalizing this intuition borrows ideas from zero-knowledge proofs [170].

Instead of imposing that the result of the mechanism is roughly the same on neighboring
datasets D1 and D2, the intuition is to impose that the result of the mechanism on D1 can
be simulated using only some information about D2. The corresponding definition, called
zero-knowledge privacy and introduced in [161], captures the idea that the mechanism does
not leak more information on a given target than a certain class of aggregate metrics. This
class, called model of aggregate information in [161], is formalized by a family of (possibly
randomized) family of algorithms Agg.
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Definition 43 ((Agg, ε)-zero-knowledge privacy [161]). Let Agg be a family of (possibly
randomized) algorithms agg. A privacy mechanismM is (Agg, ε)-zero-knowledge private
(ZKPr) if there exists an algorithm agg ∈ Agg and a simulator Sim such as for all datasets D
and indices i,M (D) ≈ε Sim (agg (D−i)).

In [161], authors show that (Agg, ε)-ZKPr implies 2ε-DP for any Agg, while ε-DP implies
(Agg, ε)-ZKPr if the identity function is in Agg. This is yet another way to formalize
the intuition that differential privacy protects against attackers who have full background
knowledge.

2.2.7.3 Multidimensional definitions

Using a simulator allows making statements of the type “this mechanism does not leak
more information on a given target than a certain class of aggregate metrics”. Similarly to
noiseless privacy, it is possible to explicitly limit the attacker’s background knowledge using
a data-generating probability distribution, as well as vary the neighborhood definitions to
protect other types of information than the presence and characteristics of individuals. This is
done in [36] as coupled-worlds privacy, a generalization of distributional DP, where a family
of functions priv represents the protected attribute.

Definition 44 ((Θ, Γ, ε)-coupled-worlds privacy [36]). Let Γ be a family of pairs of functions
(agg, priv). A mechanismM satisfies (Θ, Γ, ε)-coupled-worlds privacy (CWPr) if there is
a simulator Sim such that for all distributions θ ∈ Θ, all (agg, priv) ∈ Γ, and all possible
values p:

M (D)|D∼θ,priv(D)=p ≈ε Sim(agg (D))|D∼θ,priv(D)=p

A special case of coupled-worlds privacy is also introduced in [36] as distributional DP,
already mentioned in Section 2.2.5: each function priv captures the value of a single record,
and the corresponding function agg outputs all other records.

Coupled-worlds privacy is a good example of combining variants from different dimensions:
it changes several aspects of the original definition according to from N, B and R. Moreover,
Q and F can easily be integrated with this definition by using (ε, δ)-indistinguishability
with a Bayesian reformulation. This is done explicitly in inference-based coupled-worlds
privacy [36]; the same paper also introduces inference-based distributional differential privacy
(IBDDP).

Definition 45 ((Θ, Γ, ε, δ)-inference-based coupled-worlds privacy [36]). Given a family
Θ of probability distributions on D× B, and a family Γ of pairs of functions (agg, priv),
a mechanismM satisfies (Θ, Γ, ε, δ)-inference-based coupled-worlds privacy (IBCWPr) if
there is a simulator Sim such that for all distributions θ ∈ Θ, and all (agg, priv) ∈ Γ:

priv (D)|(D,B)∼θ,M(D)=O,B=B̂ ≈(ε,δ) priv (D)|(D,B)∼θ,Sim(agg(D))=O,B=B̂

with probability at least 1 − δ over the choice of O and B̂.

Random DP was also combined with an idea similar to ZKPr: in [35], the authors introduce
typical stability, which combines random DP with approximate DP, except that rather using
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(ε, δ)-indistinguishability between two outputs of the mechanism, it uses a simulator that
only knows data-generating distribution.

Definition 46 ((Θ, γ, ε, δ)-typical stability [35]). Given a family Θ of probability distributions
on D, a mechanismM satisfies (Θ, γ, ε, δ)-typical stability (TypSt) if for all distributions
θ ∈ Θ, there is a simulator Sim such that with probability at least 1 − γ over the choice of
D ∼ θ,M (D) ≈ε,δ Sim(θ).

In the same paper, the authors introduce a variant of the same definition with the same name,
which compares two outputs of the mechanism; this is essentially a combination between
DlPr [53, 333] and approximate DP.

We did not find any evidence that the variants and extensions of this section are used
outside of theoretical papers exploring the guarantees they provide.

2.2.8 Computational power (C)

The ε-indistinguishability property in DP is information-theoretic: the attacker is implicitly
assumed to have infinite computing power. This is unrealistic in practice, so it is natural to
consider definitions where the attacker only has polynomial computing power. Changing this
assumption leads to weaker data privacy definitions. In [285], two approaches have been
proposed to formalize this idea: either modeling the distinguisher explicitly as a polynomial
Turing machine, either allow a mechanism not to be technically differentially private, as long
as one cannot distinguish it from a truly differentially private one.

2.2.8.1 Using a polynomial distinguisher on the output

The attacker is not explicit in the formalization of DP based on ε-indistinguishability. It is
possible change the definition to make this attacker explicit: model it as a distinguisher, who
tries to guess whether a given output O comes from a dataset D1 or its neighbor D2. In doing
so, it becomes straightforward to require this attacker to be computationally bounded: simply
model it as a probabilistic polynomial-time Turing machine. In [285], the authors introduce
IndCDP, short for indistinguishability-based computational differential privacy.

Definition 47 (εκ-IndCDP [285]). A family (Mκ)κ∈N of privacy mechanismsMκ provides
εκ-IndCDP if there exists a negligible function neg such that for all non-uniform probabilistic
polynomial-time Turing machines Ω (the distinguisher), all polynomials p(·), all sufficiently
large κ ∈N, and all datasets D1, D2 ∈ D of size at most p(κ) that differ only one one record:

P [Ω(M (D1)) = 1] ≤ eεκ ·P [Ω(M (D2)) = 1] + neg (κ)

where neg is a function that converges to zero asymptotically faster than the reciprocal of any
polynomial.

This definition can also be expressed using the authors define differential indistinguisha-
bility, a notion defined in [24] that adapts ε-indistinguishability to a polynomially bounded
attacker.
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2.2.8.2 Using a polynomial distinguisher on the mechanism

Another natural option is to require that the mechanism “looks like” a truly differentially
private mechanism, at least to a computationally bounded distinguisher. In [285], the authors
introduce SimCDP, short for simulation-based computational differential privacy.

Definition 48 (εκ-SimCDP [285]). A family (Mκ)κ∈N of privacy mechanismsMκ provides
εκ-SimCDP if there exists a family (M′κ)κ∈N of εκ-DP and a negligible function neg such
that for all non-uniform probabilistic polynomial-time Turing machines Ω, all polynomials
p(·), all sufficiently large κ ∈N, and all datasets D ∈ D of size at most p(κ):

P [Ω(M (D)) = 1] −P [Ω(M′(D)) = 1] ≤ neg (κ)

where neg is a function that converges to zero asymptotically faster than the reciprocal of any
polynomial.

In [285], the authors show that εκ-SimCDP implies εκ-IndCDP.

2.2.8.3 Multidimensional definitions

IndCDP has been adapted to different settings, and extended to arbitrary neighborhood
relationships. In output constrained DP (OCDP), introduced in [194], the setting is a two-
party computation, each party can have its own set of privacy parameters (εA, εB, δA, and
δB—the δ parameters correspond to the neg (κ) term in IndCDP), and the neighborhood
relationship is determined by a function f . The authors also propose DP for Record Linkage
(DPRL), an instance of OCDP that uses for a specific function f that captures the need to
protect non-matching records during the execution of a private record linkage protocol.

Some DP variants which explicitly model an adversary with a simulator can relatively
easily be adapted to model a computationally bounded adversary, simply by imposing that
the simulator must be polynomial. This is done explicitly in [161], where the authors define
computational zero-knowledge privacy (CZKPr), which could also be adapted to e.g., the two
coupled-worlds privacy definitions as well.

Further, although we have not seen this done in practice in existing literature, the idea
behind SimCDP can in principle be adapted to any other definition: rather than requiring that
a given definition holds in an information-theoretic fashion, it should be possible to require
that the mechanism “looks like” a mechanism which genuinely satisfies the definition.

Limiting the computational power of the attacker is a reasonable assumption, but for a
large class of queries, it cannot provide significant benefits over classical DP in the typical
client-server setting [177]. Thus, existing work using it focuses on multi-party settings [42].

2.2.9 Summarizing table

In this section we summarize the results from the previous 7 sections into a table where we
list the known relations and show the properties with either referring to the original proof or
creating a novel one.
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In Table 2.20, we list the differential privacy variants and extensions introduced in this
work. For each, we specify their name, parameters and where they were introduced (col-
umn 1), which dimensions they belong to (column 2), which axioms they satisfy (column 3,
post-processing on the left and convexity on the right), whether they are composable (col-
umn 4) and how they relate to other differential privacy notions (column 5). We do not list
definitions whose only difference is that they apply DP to other types of input, like those from
Section 2.2.3.3, or geolocation-specific definitions.

The references for each claim present in Table 2.20 are listed after the table, while the
proofs follow in Section 2.2.9.1.
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

(ε, δ)-DP, or (ε, δ)-approximate DP [126]
also known as max-KL stability [37] Q X2 X2 X8 (ε, δ)-DP ⊃≺ ε-DP

(ε, δ)-probabilistic DP [267, 277]
also known as (ε, δ)-DP in distribution [60] Q 71 73 X8 (ε, δ)-DP ∼ (ε, δ)-ProDP ⊃≺ ε-DP

(ε, δa, δp)-Relaxed DP [407] Q 71 73 X8 (ε, δp)-ProDP ⊂� (ε, δa, δp)-RelDP ⊃≺ (ε, δa)-DP

ε-Kullback-Leiber Pr [31, 88] Q X2 X2 X8 (ε, δ)-DP ≺ ε-KLPr ≺ ε-DP

(α, ε)-Rényi DP [284] Q X2 X2 X8 ε-KLPr ⊂≺ (α, ε)-RenyiDP ⊃≺ ε-DP

binary-|χ|α DP [380] Q ? ? ? b-|χ|α DP � (ε, δ)-DP

tenary-|χ|α DP [380] Q ? ? ? t-|χ|α DP � (ε, δ)-DP

ε-total variation Pr [31] Q ? ? ? ε-TVPr ⊂ b-|χ|α DP

ε-quantum DP [81] Q ? ? ?

ε-mutual-information DP [88] Q X2 X2 X8 (ε, δ)-DP ≺ ε-MIDP ≺ ε-KLPr

(µ, τ)-mean concentrated DP [132] Q 71 ? X8 (ε, δ)-DP ≺ (µ, τ)-mCoDP ≺ ε-DP

(ξ, ρ)-zero concentrated DP [57] Q X2 X2 X8 (ξ, ρ)-zCoDP ∼ (µ, τ)-mCoDP

(ξ, ρ, δ)-approximate CoDP [57] Q 72 ? X8 (ε, δ)-DP � (ξ, ρ, δ)-ACoDP ⊃≺ (ξ, ρ)-zCoDP

(ξ, ρ,ω)-bounded CoDP [57] Q X2 X2 X8 (ξ, ρ,ω)-bCoDP ⊃≺ (ξ, ρ)-zCoDP

(η, τ)-truncated CoDP [81] Q X2 X2 X8 (η, τ)-tCoDP [81] ∼ ε-DP

(ρ,ω)-truncated CoDP [56] Q X2 X2 X8 (ρ,ω)-tCoDP [56] ⊂≺ (ξ, ρ,ω)-bCoDP

continued
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

( f , ε)-divergence DP [31] Q X2 X2 ? ( f , ε)-DivDP ⊃ most definitions in Q

( fk , ε)-divergence DP [118] Q X2 X2 ? ( fk , ε)-DivDP ⊂ ( f , ε)-DivDP

(H, f , ε)-capacity bounded DP [69] Q X2 X2 ? (H, f , ε)-CBDP ⊂≺ ( f , ε)-DivDP

ε-unbounded DP [227] N X1 X1 X9 ε-DP ∼ ε-uBoDP ⊂∼ (c, ε)-GrDP

ε-bounded DP [227]
also known as per-person DP [149] N X1 X1 X9 ε-BoDP ≺ ε-DP

ε-attribute/bit DP [227] N X1 X1 X9 ε-BitDP ≺ ε-AttDP ≺ ε-BoDP

ε-element DP [22] N X1 X1 X9 ε-ELDP ≺ ε-DP

(P, ε)-one-sided DP [231] N X1 X1 X9 (P, ε)-OnSDP ⊃≺ ε-BoDP

(N, k, ε)-sensitive privacy [23] N X1 X1 X9 (N, k, ε)-SenPr ⊂ ε-(P, ε)-OnSDP

(P, ε)-anomaly-restricted DP [51] N X1 X1 X9 (P, ε)-ARDP ⊃≺ ε-DP

(c, ε)-group DP [123]
also known as DP under correlation [73] N X1 X1 X9 (c, ε)-GrDP ⊃∼ ε-DP

(R, c, ε)-dependent DP [258] N X1 X1 X9 (R, c, ε)-DepDP ⊃ (c, ε)-GrDP

(A, ε)-bayesian DP [399] N X1 X1 X9 (A, ε)-BayDP [399] ⊃ (R, c, ε)-DepDP

(A, ε)-correlated DP [392, 393] N X1 X1 X9 (A, ε)-CorDP ⊂ (A, ε)-BayDP [399]

(A, ε)-prior DP [256] N X1 X1 X9 (A, ε)-PriDP ⊃ (A, ε)-BayDP [399]

ε-free lunch Pr [227] N X1 X1 X9 ε-FLPr � all definitions in N

continued
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

(D, ε)-individual DP [349]
also known as conditioned DP [64] N X1 X1 X9 (D, ε)-IndDP ≺ ε-DP

(D, t, ε)-per-instance DP [379] N X1 X1 X9 (D, t, ε)-PIDP ≺ (D, ε)-IndDP

(R, ε)-generic DP [145, 227] N X1 X1 X9 (R, ε)-GcDP [227] ⊃ most definitions in N

(d, ∆, ε)-constrained DP [409]
also known as adjacent DP [235]

and DP under a neighborhood [145]
N X1 X1 X9 (d, ∆, ε)-ConsDP ∼ (R, ε)-GcDP

(d, ∆, SD, ε)-distributional Pr [409] N X1 X1 X9 (d, ∆, SD, ε)-DlPr [409] ⊂ (R, ε)-GcDP

( f , ε)-sensitivity-induced DP [335] N X1 X1 X9 ε-SIDP ⊂ (R, ε)-GcDP

(Q, ε)-induced-neighbors DP [227] N X1 X1 X9 (Q, ε)-INDP ⊂ (R, ε)-GcDP

(G, Q, ε)-blowfish Pr [187, 193] N X1 X1 X9 (G, Q, ε)-BFPr ⊂ (R, ε)-GcDP ⊃≺ (Q, ε)-INDP

ε-adjacency-relation div. DP [218] Q,N X2,1 X2,1 ? (R, ε)-GcDP [227] ⊂ (R, f , ε)-ARDDP ⊃ ( f , ε)-DivDP

Ψ-personalized DP [134, 165, 212, 261, 302]
also known as heterogeneous DP [10] V X4 X4 X9 Ψ-PerDP ⊃ ε-DP

Ξ-tailored DP [263] V X4 X4 X9 Ξ-TaiDP ⊃ Ψ-PerDP

ε(·)-outlier Pr [263] V X4 X4 X9 ε(·)-OutPr ⊂ Ξ-TaiDP

(k, ε)-simple-outlier Pr [263] V X4 X4 X9 (k, ε)-SOPr ⊂ ε(·)-OutPr

(k, ε)-simple outlier DP [263] V X4 X4 X9 ε-DP � (k, ε)-SODP ⊂ ε(·)-OutPr

(k, ε)-staircase outlier DP [263] V X4 X4 X9 (k, ε)-SCODP ⊂ ε(·)-OutPr

continued
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

(ε, p, r)-Pareto DP [263] V X4 X4 X9 (ε, p, r)-ParDP ⊂ Ξ-TaiDP

(π, γ, ε)-random DP [185] V ? 75 X8 (π, γ, ε)-RanDP ⊃≺ ε-DP

(π, γ, ε)-predictive DP [184]
also known as model-specific DP [270] V ? ? ? (π, γ, ε)-RanDP ≺ (π, γ, ε)-PredDP ⊃≺ ε-DP

(θ, γ, ε)-generalized DP [111] V ? ? ? (θ, γ, ε)-GdDP ⊃≺ ε-DP

dD-Pr [67]
also known as extended DP [219] N,V X4 X4 X9 ε-DP ⊂ dD-Pr

ε-weighted DP [322] N,V X4 X4 X9 ε-WeiDP ⊂ dD-Pr

(dD, ε)-smooth DP [31] N,V X4 X4 X9 (dD, ε)-SmoDP ∼ dD-Pr

(dD, ε)-earth mover’s Pr [151] N,V X4 X4 X9 (dD, ε)-EMDP ⊂ dD-Pr

(π, ε, γ)-DP on δ location set [396] N,V X4 X4 X9 (π, ε, γ)-LocSetDP

(ε, γ)-distributional Pr [333, 409] N,V ? ? ? ε-FLPr ⊂ (ε, γ)-DlPr [53, 333]

(ε(·), δ(·))-endogenous DP [234] Q,V X4 X4 X9 (ε, δ)-DP ⊂ (ε(·), δ(·))-EndDP ⊃≺ Ψ-PerDP

(π, ε, δ)-weak Bayesian DP [367] Q,V X1 ? X9 (ε, δ)-DP � (π, ε, δ)-WBDP ≺ (π, γ, ε)-RanDP

(Θ, ε)-on average KL Pr [150, 381]
also known as average leave-one-out KL stability [150] Q,V X2,1 ? ?16 ε-KLPr � (Θ, ε)-avgKLPr ≺ (π, γ, ε)-RanDP

(π, ε, δ)-Bayesian DP [367] Q,V X1 75 X9 (ε, δ)-ProDP � (π, ε, δ)-BayDP [367] ≺ (π, γ, ε)-RanDP

(θ, ε, δ)-privacy at risk [92] Q,V X1 75 X9 (ε, δ)-ProDP � (θ, ε, δ)-PAR ≺ (π, γ, ε)-RanDP

(dD, ε, δ)-pseudo-metric DP [106] Q,N,V ? ? X8 (ε, δ)-DP ⊂ (dD, ε, δ)-PsDP ⊃≺ dD-Pr

continued
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

( f , d, ε)-extended divergence DP [218] Q,N,V X4 X4 ? dD-Pr ⊂ ( f , d, ε)-EDivDP ⊃ ( f , ε)-Div DP

(R, M)-generic DP [225] Q,N,V X1 X1 ? (R, M)-GcDP [225] ⊃ (ε, δ)-DP

(R, q)-abstract DP [225] Q,N,V 71 71 ? (R, q)-AbsDP ⊃ (R, M)-GcDP [225]

(Θ, ε)-noiseless Pr [46, 116, 164, 391] B X1 X1 710 ε-DP ⊂ (Θ, ε)-NPr

(Θ, ε)-causal DP [100] B X1 X1 710 (Θ, ε)-CausDP ⊃≺ ε-DP

(β, ε)-DP under sampling [255] Q,B X1 X1 710 (Θ, ε)-NPr ⊃ (β, ε)-SamDP ⊃≺ ε-DP

(Θ, ε, δ)-active PK DP [36, 46, 100] Q,B X1 X1 710 (Θ, ε, δ)-APKDP ⊃≺ (Θ, ε)-NPr

(Θ, ε, δ)-passive PK DP [100] Q,B X1 X1 710 (Θ, ε, δ)-APKDP � (Θ, ε, δ)-PPKDP ⊃≺ (Θ, ε)-NPr

(Θ, Φ, ε)-pufferfish Pr [206, 219, 228] N,B X1 X1 710 (Θ, ε)-NPr ⊂ (Θ, Φ, ε)-PFPr ⊃ (R, ε)-GcDP

(π, k, ε)-Bayesian DP [248] N,B X1 X1 710 BayDP [248] ⊂ (Θ, Φ, ε)-PFPr

(Θ, ε, δ)-distribution Pr [219] Q,N,B X4 X4 710 (Θ, ε, δ)-DnPr ⊃ (Θ, ε, δ)-APKDP

(Θ, ε, δ)-profile-based DP [162] Q,N,B X4 X4 710 (Θ, ε, δ)-PBDP ⊂ (Θ, ε, δ)-DnPr

(Θ, ε, δ)-probabilistic DnPr [219] Q,N,B 71 73 710 ε-ProDP ⊂ (Θ, ε, δ)-PDnPr ⊃ (Θ, ε)-DnPr

( f , Θ, ε)-divergence DnPr [218] Q,N,B X4 X4 710 ( f , ε)-DP ⊂ ( f , Θ, ε)-DDnPr ⊃ (Θ, ε)-DnPr

(d, Θ, ε)-extended DnPr [219] N,V,B X4 X4 710 dD-Pr ⊂ (d, Θ, ε)-EDnPr ⊃ (Θ, ε)-DnPr

(d, f , Θ, ε)-ext. div. DnPr [218] Q,N,V,B X4 X4 710 ( f , Θ, ε)-DDPr ⊂ (d, f , Θ, ε)-EDDnPr ⊃ (d, Θ, ε)-EDnPr

ε-indistinguishable Pr [260] F X14 X14 X14 ε-IndPr ∼ ε-DP

continued
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

f -DP [113] Q,F X1 ? X1 f -DP ⊃ (ε, δ)-DP

Gaussian DP [113] Q,F X1 ? X1 GaussDP ⊂ f -Pr

(Θ, ε)-positive membership Pr [254] B,F X6 X6 710 (Θ, ε)-PMPr ⊃ ε-BoDP

(Θ, ε)-negative membership Pr [254] B,F X6 X6 710 (Θ, ε)-NMPr ⊃ ε-BoDP

(Θ, ε)-membership Pr [254] B,F X6 X6 710 (Θ, ε)-PMPr ≺ (Θ, ε)-MPr � (Θ, ε)-NMPr

(Θ, ε, δ)-adversarial Pr [326, 391]
also known as information privacy [391] Q,B,F X6 X6 710 (ε, δ)-DP ⊂ (Θ, ε, δ)-AdvPr ≺ (Θ, ε)-PMPr

(Θ, ε)-aposteriori noiseless Pr [46] B,F X6 X6 ? (Θ, ε)-ANPr ∼ (Θ, ε)-NPr

ε-semantic Pr [158, 217] F ? ? ? ε-SemPr ∼ ε-DP

ε-range-bounded Pr [121] F ? ? ? ε-RBPr ∼ ε-DP

(Θ, ε)-inference-based causal DP [100] B,F ? ? ? (Θ, ε)-IBCDP ∼ (Θ, ε)-CausDP

(Θ, ε)-information Pr [119] N,B,F ? ? ? (Θ, ε)-InfPr � ε-DP

(Agg, ε)-zero-knowledge Pr [161] R X1 X1 ?16 (Agg, ε)-ZKPr � ε-DP

(P, ε, δ)-bounded leakage DP [257] Q,R X1 X1 X8 (P, ε, δ)-BLDP ⊃ (ε, δ)-DP

(Θ, Γ, ε)-coupled-worlds Pr [36] N,B,R X1 X1 74 (Θ, Γ, ε)-CWPr ⊃ ε-DP

(Θ, ε)-distributional DP [36] N,B,R X1 X1 74 (Θ, Γ, ε)-CWPr ⊃ (Θ, ε)-DistDP ⊃≺ ε-DP

(Θ, Γ, ε, δ)-inference-based CW Pr [36] Q,N,B,F,R ? ? 74 (Θ, Γ, ε, δ)-IBCWPr � (Θ, Γ, ε)-CWPr

(Θ, Γ, ε, δ)-inference-based DistDP [36] Q,N,B,F,R ? ? 74 (Θ, ε)-DDP � (Θ, Γ, ε, δ)-IBDDP ⊂ (Θ, Γ, ε, δ)-IBCWPr

continued
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Name & References Dimensions18 Axioms
Cp.13 Relations

P.P.11 Cv.12

(Θ, ε, γ, δ)-typical stability [35] Q,V,R X1 ? X8

εκ-SIM-computational DP [285] C X7 X7 X17 εκ-SimCDP ≺ ε-DP

εκ-IND-computational DP [285] C X7 X7 X17 εκ-IndCDP ≺ εκ-SimCDP

(ε, δ)-DP for Record Linkage [194] C X7 X7 X17 (ε, δ)-RLDP ⊂ (ε, δ, f )-OCDP

(ε, δ, f )-output constrained DP [194] N,C X7 X7 X17 (ε, δ, f )-OCDP ⊃ εκ-IndCDP

(Agg, ε)-computational ZK Pr [161] R,C X7 X7 ? (Agg, ε)-CZKPr ⊃≺ (Agg, ε)-ZKPr

Table 2.20: Summary of variants/extensions of DP representing the main options in each combination of dimensions.
1 See Proposition 11.
2 See Proposition 12.
3 See Proposition 13.
4 See Proposition 14.
5 See Proposition 15.
6 See Proposition 16.
7 See Proposition 17.
8 See Proposition 18.
9 See Proposition 19.
10 See Proposition 20.
11 Post-processing
12 Convexity
13 Composition

14 Follows directly from its equivalence with ε-DP.
15 A modified definition was presented in [228] which is an instance of PF Pr.
16 A proof for a restricted scenario appears in the paper introducing the definition.
17 This claim appears in [284], its proof is in the unpublished full version.
18 Abbreviations used for dimensions:

•Q: Quantification of privacy loss

•N: Neighborhood definition

•V: Variation of privacy loss

•B: Background knowledge

• F: Formalism of privacy loss

•R: Relativization of knowledge gain

•C: Computational power
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2.2.9.1 Proofs of properties

We first list known results for variants and extensions satisfying privacy axioms, prove
additional results, then we do the same for composition.

Axioms

Proposition 11.

1. ProDP, ACoDP, and mCoDP do not satisfy the post-processing axiom [57, 277].

2. AbsDP satisfies neither privacy axiom, while GlDP satisfies both [225, 228]22.

3. WBDP satisfies the post-processing axiom [367].

4. TypSt satisfies the post-processing axiom [35].

5. GaussDP satisfies the post-processing axiom [113].

6. PFPr satisfy both privacy axioms [228].

7. CWPr satisfy both privacy axioms 23 [36].

8. APKDP and PPKDP satisfy both privacy axioms [100].

9. BLDP satisfies both privacy axioms [257].

Proposition 12. All instantiations of DivDP satisfy both privacy axioms. In particular,
approximate DP, MIDP, KLPr, RenDP, and zCoDP satisfy both axioms.

Proof. The post-processing axiom follows directly from the monotonicity property of the
f -divergence. The convexity axiom follows directly from the joint convexity property of the
f -divergence. �

Proposition 13. ProDP and ACoDP do not satisfy the convexity axiom.

Proof. Consider the following mechanismsM1 andM2, with input and output in {0, 1}.

• M1 (0) = 0,M1 (1) = 1 with probability δ, andM1 (1) = 0 with probability 1 − δ.

• M2 (0) =M2 (1) = 1.

Both mechanisms are
(

1
1−δ , δ

)
-ProDP. Now, consider the mechanismM which appliesM1

with probability 1 − 2δ andM2 with probability 2δ.M is a convex combination ofM1 and
M2, but the reader can verify that it is not

(
1

1−δ , δ
)
-ProDP. The result for (ξ, ρ, δ)-ACoDP is

a direct corollary, since is is equivalent to (ξ, δ)-ProDP when ρ = 0. �

Proposition 14. dD-Pr satisfies both privacy axioms. Further, EDivDP also satisfies both
privacy axioms.

22 As an immediate corollary, all definitions which combine notions in N and NPr also satisfy both axioms.
23 As an immediate corollary, DistDP and ZKPr also satisfy both axioms.
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Proof. The proof of Proposition 11 for PFPr (Appendix B in [228]) is a proof by case analysis
on every possible protected property. The fact that ε is the same for every protected property
has no influence on the proof, so we can directly adapt the proof to dD-Pr, and its combination
with PFPr. Similarly, the proof can be extended to arbitrary divergence functions, like in
Proposition 12. �

Proposition 15. RanDP does not satisfy the convexity axiom.

Proof. Let π be the uniform distribution on {0, 1}, let D1 be generated by picking 10 records
according to π, and D2 by flipping one record at random. LetM0 return 0 if all records are 0,
and ⊥ otherwise. LetM1 return 1 if all records are 1, and ⊥ otherwise.

Note that both mechanisms are (π, 2−9, 0)-RanDP. Indeed,M0 will only return 0 for D1
with probability 2−10, and for D2 with probability 2−10 (if D1 only has one 1, which happens
with probability 10 · 2−10, and this record is flipped, which happens with probability 0.1). In
both cases,M0 will return ⊥ for the other database; which will be a distinguishing event.
Otherwise,M0 will return τ for both databases, soM (D1) ≈0 M (D2). The reasoning is the
same forM1.

However, the mechanismM0.5 obtained by applying eitherM0 orM1 uniformly randomly
does not satisfy (π, 2−9, 0)-RanDP: the indistinguishability property does not hold if D1 or
D2 have all their records set to either 0 or 1, which happens twice as often as either option
alone. �

Proposition 16. All variants of MPr, AdvPr, and ANPr satisfy both axioms. As a direct
corollary, InfPr also satisfies both axioms.

Proof. We prove it for AdvPr. A mechanismM satisfies (Θ, ε, δ)-AdvPr if for all t ∈ T ,
θ ∈ Θ, and S ⊆ O, PD∼θ [t ∈ D

∣∣∣M (D) ∈ S ] ≤ eε · PD∼θ [t ∈ D] + δ. We first prove
that it satisfies the convexity axiom. SupposeM is a convex combination ofM1 andM2.
Simplifying PD∼θ [. . . ] into P [. . . ], we have:

P [t ∈ D
∣∣∣M (D) ∈ S ] =

P [t ∈ D andM (D) ∈ S andM =M1]

P [M (D) ∈ S ]
+

P [t ∈ D andM (D) ∈ S andM =M2]

P [M (D) ∈ S ]

Denoting Xi = P [M (D) ∈ S andM =Mi] for i ∈ {1, 2}, this gives:

P [t ∈ D
∣∣∣M (D) ∈ S ] =

X1 ·P [t ∈ D
∣∣∣M1 (D) ∈ S ]

X1 + X2

X2 ·P [t ∈ D
∣∣∣M2 (D) ∈ S ]

X1 + X2

≤
X1 (eε ·P [t ∈ D]) + δ

X1 + X2
+

X2 (eε ·P [t ∈ D]) + δ

X1 + X2
≤ eε ·P [t ∈ D] + δ.

The proof for the post-processing axiom is similar, summing over all possible outputsM (D).
It is straightforward to adapt the proof to all other definitions which change the shape of the
prior-posterior bounds. �
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Proposition 17. Both versions of CDP satisfy both privacy axioms; where the post-processing
axiom is modified to only allow post-processing with functions computable on a probabilistic
polynomial time Turing machine. As a direct corollary of Proposition 11 for CWPr, CZKPr
also satisfies both privacy axioms.

Proof. For Ind-CDP and the post-processing axiom, the proof is straightforward: if post-
processing the output could break the ε-indistinguishability property, the attacker could do this
on the original output and break the ε-indistinguishability property of the original definition.

For Ind-CDP and the convexity axiom, without loss of generality, we can assume that the
sets of possible outputs of both mechanisms are disjoint (otherwise, this give strictly less
information to the attacker). The proof is then the same as for the post-processing axiom.

For SimCDP, applying the same post-processing function to the “true” differentially private
mechanism immediately leads to the result, since DP satisfies post-processing. The same
reasoning holds for convexity. �

Composition

In this section, ifM1 andM2 are two mechanisms, we denoteM1+2 the mechanism defined
byM1+2(D) = (M1(D),M2(D)).

Proposition 18 (Existing results). IfM1 andM2 are respectively. . .

1. (ε1, δ1)-DP and (ε2, δ2)-DP, thenM1+2 is (ε1 + ε2, δ1 + δ2)-DP [126].

2. (ε1, δ1)-ProDP and (ε2, δ2)-ProDP, thenM1+2 is (ε1 + ε2, δ1 + δ2)-ProDP [60, 267,
277].

3.
(
ε1, δa,1, δp,1

)
-RelDP and

(
ε2, δa,2, δp,2

)
-RelDP, thenM1+2 is

(
ε1 + ε2, δa,1 + δa,2, δp,1 + δp,2

)
-

RelDP [407].

4. ε1-MIDP and ε2-MIDP, thenM1+2 is (ε1 + ε2)-MIDP [88].

5. ε1-KLDP and ε2-KLDP, thenM1+2 is (ε1 + ε2)-KLDP [31, 88].

6. (α1, ε1)-RenDP and (α2, ε2)-RenDP, thenM1+2 is (max (α1,α2) , ε1 + ε2)-RenyiDP [284].

7. (µ1, τ1)-mCoDP and (µ2, τ2)-mCoDP, thenM1+2 is
(
µ1 + µ2,

√
µ12 + µ22

)
-mCoDP [57,

132].

8. (ξ1, ρ1)-zCoDP and (ξ2, ρ2)-zCoDP, thenM1+2 is (ξ1 + ξ2, ξ1 + ξ2)-zCoDP [57].

9. (ξ1, ρ1, δ1)-ACoDP and (ξ2, ρ2, δ2)-ACoDP, thenM1+2 is (ξ1 + ξ2, ξ1 + ξ2, δ1 + δ2 − δ1δ2)-
ACoDP [57].

10. (ξ1, ρ1,ω1)-bCoDP and (ξ2, ρ2,ω2)-bCoDP, thenM1+2 is (ξ1 + ξ2, ξ1 + ξ2, min(ω1,ω2))-
bCoDP [57].

11. (η1, τ1)-CCoDP and (η2, τ2)-CCoDP, thenM1+2 is
(
η1 + η2, η1+η2

2

2

)
-CCoDP [81].
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12. f1-DP and f2-DP, than thenM1+2 is f1 ⊗ f2-DP [113].

13. (π, γ1, ε1)-RanDP and (π, γ2, ε2)-RanDP, thenM1+2 is (π, γ1 +γ2, ε1 + ε2)-RanDP [184].

14. (π, ε1, δ1)-BayDP [367] and (π, ε1, δ1)-BayDP [367], thenM1+2 is (π, ε1 + ε2, δ1 + δ2)-
BayDP [367]. The same result holds for WBDP as an immediate consequence of Theo-
rem 1 in [367].

15. (Θ, ε1, γ1, δ1)-TypSt and (Θ, ε2, γ2, δ2)-TypSt, thenM1+2 is (Θ, ε1 + ε2, γ1 +γ2, δ1 +
δ2)-TypSt [35].

16. (dD, ε1, δ1)-PsDP and (dD, ε2, δ2)-PsDP thenM1+2 is (dD, ε1 + ε2, δ1 + δ2)-PsM
DP [106].

17. (P1, ε1, δ1)-BLDP and (P2, ε2, δ2)-BLDP, thenM1 + 2 is (P1+2, ε1 + ε2, δ1 + δ2)-
BLDP, where P1+2 is the concatenation of P1 and P2 (where the randomness is not
shared between P1 and P2, nor betweenM1 andM2) [257].

Proposition 19. If M1 is d1
D

-private and M2 is d2
D

-private, then M1+2 is d1+2
D

-private,
where d1+2

D
(D1, D2) = d1

D
(D1, D2) + d2

D
(D1, D2).

Proof. The proof is essentially the same as for ε-DP.M1’s randomness is independent from
M2’s, so:

P [M1 (D1) = O1 andM2 (D1) = O2]

= P [M1 (D1) = O1] ·P [M2 (D1) = O2]

≤ ed1
D
(D1,D2) ·P [M2 (D2) = O1] · ed2

D
(D1,D2) ·P [M2 (D2) = O2]

≤ ed1+2
D

(D1,D2) ·P [M1 (D2) = O1 andM2 (D2) = O2] .

Each definition listed in Proposition 18 can also be combined with dD-privacy, and the
composition proofs can be similarly adapted. �

Proposition 20. In general, definitions which assume limited background knowledge from
the adversary do not compose.

Proof. The proof of Proposition 19 cannot be adapted to a context in which the attacker has
limited background knowledge: as the randomness partially comes from the data-generating
distribution, the two probabilities are no longer independent. A typical example considers
two mechanisms which answer e.g., queries “how many records satisfy property P” and
“how many records satisfy property P and have an ID different from 4217”: the randomness
in the data might make each query private, but the combination of two queries trivially
reveals something about a particular user. Variants of this proof can easily be obtained for all
definitions with limited background knowledge. �
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2.2.10 Related work

In this section, we detail our criteria for excluding particular data privacy definitions from
our work, we list some relevant definitions that were excluded by the criteria presented in
Section 2.2.1.4, and we list related works and existing surveys in the field of data privacy.

2.2.10.1 Out of scope definitions

As detailed in Section 2.2.1.4, we considered certain data privacy definitions to be out of
scope for our work, even when they seem to be related to differential privacy. This section
elaborates on such definitions.

Lack of semantic guarantees

Some definitions do not provide clear semantic privacy guarantees, or are only used as a tool
in order to prove links between existing definitions. As such, we did not include them in our
survey.

• ε-privacy, introduced in [264], was a first attempt at formalizing an adversary with re-
stricted background knowledge. Its formulation does not provide a semantic guarantee,
and it was superseded by noiseless privacy [46, 116] (introduced in Section 2.2.5).

• Relaxed indistinguishability, introduced in [326] is a relaxation of adversarial privacy
that provides a plausible deniability by requiring for each tuple, that at least l tuples must
exist with ε-indistinguishability. It does not provide any guarantee against Bayesian
adversaries.

• Differential identifiability, introduced in [244], bounds the probability that a given
individual’s information is included in the input datasets but does not measure the
change in probabilities between the two alternatives. As such, it does not provide any
guarantee against Bayesian adversaries24.

• Crowd-blending privacy, introduced in [160], combines differential privacy with k-
anonymity. As it is strictly weaker than any mechanism which always returns a k-
anonymous dataset, the guarantees it provides against a Bayesian adversary are unclear.
It is mainly used to show that combining crowd-blending privacy with pre-sampling
implies zero-knowledge privacy [160, 263].

• Membership privacy25, introduced in [336], is tailored to membership inference attacks
on machine learning models; the guarantees it provides are not clear.

• (k, ε)-anonymity, introduced in [197], first performs k-anonymisation on a subset of the
quasi identifiers and then ε-DP on the remaining quasi-identifiers with different settings
for each equivalence class of the k-anonymous dataset. The semantic guarantees of this
definition are not made explicit.

24 Differential identifiability was reformulated in [254] as an instance of membership privacy.
25 Another definition with the same name is introduced in [254], we mention it in Section 2.2.6
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• Posteriori DP, introduced in [378], compares two posteriors in a way similar to
inferential privacy, but does not make the prior (and thus, the attacker model) explicit.

• Noiseless privacy26, introduced in [147], limits the change in the number of possible
outputs when one record in the dataset changes. As it does not bound the change in
probabilities of the mechanism, it does not seem to offer clear guarantees against a
Bayesian adversary.

• Weak DP, introduced in [382], adapts DP for streams, but it only provides a DP
guarantee for the average of all possible mechanism outputs27, rather than for the
mechanism itself. Thus, its semantics guarantees are also unclear.

• Error Preserving Privacy, introduced in [90], states that the variance of the adversary’s
error when trying to guess a given user’s record does not change significantly after
accessing the output of the mechanism. The exact adversary model is not specified.

Variants of sensitivity

A important technical tool used when designing differentially private mechanisms is the
sensitivity of the function that we try to compute. There are many variants to the initial
concept of global sensitivity [128], including local sensitivity [303], smooth sensitivity [303],
restricted sensitivity [52], empirical sensitivity [74], empirical differential privacy28 29 [5],
recommendation-aware sensitivity [410], record and correlated sensitivity [411], dependence
sensitivity [258], per-instance sensitivity [379], individual sensitivity [89], elastic sensitiv-
ity [209] and derivative sensitivity [238]. These notions only change how to achieve a given
privacy definition (typically DP), and are not relevant to the definition itself, so we did not
consider these notions in our work.

2.2.10.2 Local model and other contexts

In this work we focused on DP variants/extensions typically used in the global model, in which
a central entity has access to the whole dataset. It is also possible to use DP in other contexts,
without formally changing the definition. The main alternative is the local model, where each
individual randomizes their own data before sending it to an aggregator. This model, formally
introduced in [117], is used e.g., by Google [141], Apple [360], or Microsoft [107]. These
models can be thought of as different ways of deploying a given privacy definition, rather
than distinct definitions.

Many definitions we listed were initially presented in the local model, such as dD-
privacy [67], geo-indistinguishability [15], earth mover’s Pr [151], location Pr [138], profile-
based DP [162], divergence DP and smooth DP from [31], and extended DP, distribution Pr,
and extended distribution Pr from [219].

Below, we list the definitions that are the same as previously listed definitions, but used in
a different attacker setting; the list also includes alternatives to the local and global models.

26 Another definition with the same name is introduced in [46, 116], we mention it in Section 2.2.5.
27 It also assumes that some uncertainty comes from the data itself, similarly to definitions in Section 2.2.6
28 Even though it is introduced as a variant of DP, it was later shown to be a measure of sensitivity [64].
29 Another definition with the same name is introduced in [58], we mention it in Section 2.2.5.
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• In [344], the authors introduce distributed DP, which corresponds to local DP, with the
additional assumption that only a portion of participants are honest.

• In [220], the authors define joint DP, to model a game in which each player cannot
learn the data from any other player, but are still allowed to observe the influence
of their data on the mechanism output. In [390], authors define a slightly different
version of this idea, multiparty DP, in which the view of each subgroup of players is
differentially private in respect to other players inputs.

• In [50], the authors define DP in the shuffled model, which falls in-between the global
and the local model: the local model is augmented by an anonymous channel that
randomly permutes a set of user-supplied messages, and differential privacy is only
required of the output of the shuffler.

• In [207], the authors define localized information privacy, a local version of information
privacy (mentioned in Section 2.2.6).

• In [289], the authors define utility-optimized local DP, a local version of one-sided
differential privacy (mentioned in Section 2.2.3) which additionally guarantees that if
the data is considered sensitive, then a certain set of outputs is forbidden.

• In [6, 112, 301], the authors define personalized local DP, a local version of personal-
ized DP (mentioned in Section 2.2.4).

• In [12], the authors define dD-local DP, a local version of dD-DP (mentioned in
Section 2.2.4); this was redefined as condensed local DP in [180].

• In [250], the authors define task-global DP and task-local DP, which are equivalents
of element-level DP (mentioned in Section 2.2.3) in a meta-learning context.

2.2.10.3 Related work

The relation between the main syntactic models of anonymity and DP was studied in [78], in
which the authors claim that the former is designed for privacy-preserving data publishing
(PPDP), while DP is more suitable for privacy preserving data mining (PPDM). We disagree
with this assessment, and discuss differentially private data publishing at length in Chapter 4.

In [196], the authors classify different privacy enhancing technologies (PETs) into 7
complementary dimensions. Indistinguishability falls into the Aim dimension, but within this
category, only k-anonymity and oblivious transfer are considered; differential privacy is not
mentioned. In [7], the authors survey privacy concerns, measurements and privacy-preserving
techniques used in online social networks and recommender systems. They classify privacy
into 5 categories; DP falls into Privacy-preserving models along with e.g., k-anonymity.
In [376] the authors classified 80+ privacy metrics into 8 categories based on the output of
the privacy mechanism. One of their classes is Indistinguishability, which contains DP as
well as several variants. Some variants are classified into other categories; for example Rényi
DP is classified into Uncertainty and mutual-information DP into Information gain/loss. The
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authors list 8 differential privacy variants; our taxonomy can be seen as an extension of the
contents of their work (and in particular of the Indistinguishability category).

In [378], authors establish connections between differential privacy (seen as the additional
disclosure of an individual’s information due to the release of the data), identifiability (seen as
the posteriors of recovering the original data from the released data), and mutual-information
privacy (which measures the average amount of information about the original dataset
contained in the released data).

The appropriate selection of the privacy parameters for DP was also exhaustively studied.
This problem in not trivial, and many factors can be considered: in [200], the authors used
economic incentives, in [234, 243, 312], the authors looked at individual preferences, and
in [237, 259], the authors took into account an adversary’s capability in terms of hypothesis
testing and guessing advantage respectively.

Earliest surveys focusing on DP summarize algorithms achieving DP and applications [123,
124]. The more detailed “privacy book” [131] presents an in-depth discussion about the
fundamentals of DP, techniques for achieving it, and applications to query-release mecha-
nisms, distributed computations or data streams. Other textbooks have focused on empirical
performance of various algorithms [252], asymptotic upper and lower bounds for various
tasks [372], or have tried to make differential privacy more approachable to non-experts [304].
Other surveys focus on the release of histograms and synthetic data with DP [189, 296].

Finally, some surveys focus on location privacy. In [266], the authors highlight privacy
concerns in this context and list mechanisms with formal provable privacy guarantees; they
describe several variants of differential privacy for streaming (e.g., pan-privacy) and location
data (e.g., geo-indistinguishability) along with extensions such as pufferfish and blowfish
privacy. In [68], the authors analyze different kinds of privacy breaches and compare metrics
that have been proposed to protect location data.

2.3 conclusion

In this chapter, we first listed four syntactic privacy definitions; each one a different attempt
at defining anonymization based on properties of the dataset. These definitions demonstrated
the various attack models that are relevant in different contexts, and the difficulty of finding a
satisfying notion of anonymity. We then introduced differential privacy, a definition which
changes the conceptual perspective: rather than seeing anonymization as a property of a
database, it considers it as a property of the process. Thanks to this view, we can now make
strong statements about the information that an attacker can get about an individual, bypass-
ing the need for error-prone attack modeling. Differential property also comes with useful
properties, such as post-processing and composition, which makes it easier for researchers
and engineers to build mechanisms that satisfy it.

Differential privacy itself has been extremely successful, and the intuition behind it inspired
hundreds of alternative definitions. But this also has created a situation where a newcomer
to the field of anonymization can have trouble navigating it, understanding how different
notions relate to each other, and choosing which notion is most appropriate for their use case.
To solve this issue, we proposed a classification of DP variants and extensions using the
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concept of dimensions. When possible, we compared definitions from the same dimension,
and we showed that definitions from the different dimensions can be combined to form new,
meaningful definitions. In theory, it means that even if there were only three possible ways
to change a dimension (e.g., making it weaker or stronger), this would result in 37 = 2187
possible definitions: the ≈ 225 existing definitions shown in Figure 2.7 are only scratching the
surface of the space of possible notions. Using these dimensions, we unified and simplified
the different notions proposed in the literature. We highlighted their properties such as
composability and whether they satisfy the privacy axioms by either collecting the existing
results or creating new proofs, and whenever possible, we showed their relative relations to
one another. We hope that this work will make the field of data privacy more organized and
easier to navigate, especially for new practitioners.



3
D I F F E R E N T I A L P R I VAC Y U N D E R PA RT I A L K N OW L E D G E

However, just because something isn’t surprising doesn’t mean
it’s easy to deal with.

— Nnedi Okorafor, Binti

The success of differential privacy, and the many variants and extensions proposed since its
introduction, suggests a solution to our initial problem. To pick a definition of privacy that
makes sense in a certain context, we can start from differential privacy, and optionally modify
it to better fit our use case.

If we want to modify the protected characteristic, we can change the definition of neigh-
borhood (Section 2.2.3). If is too expensive to consider the absolute worst-case output, we
can relax this by averaging the privacy loss, or accepting a very small risk (Section 2.2.2).
If different people in our dataset have distinct privacy requirements, we can also model this
in the definition (Section 2.2.4). In all the aforementioned cases, we can pick a variant that
satisfies useful properties like post-processing or composition, and still keep the strong formal
guarantees that differential privacy offers.

From a purely academic standpoint, it seems like this definitional problem is now solved.
Unfortunately, this are a bit more complicated in practice. In real-world scenarios, people
trying to advocate for formal privacy guarantees often encounter pushback. “Why is it
necessary to opt for such a strong notion?”, a skeptic might say. “This data is heavily
aggregated, surely the risk is low enough. It seems fine to me. Can you find a realistic way of
attacking it? Maybe then I will be convinced that stronger guarantees are necessary.”

To advocate for using differential privacy, we can try explaining what happens if the
definition is not satisfied. DP states that changing the data of a single user cannot be detected
by looking at the mechanism’s output. So by definition, a mechanism that is not differentially
private allows the above situation to happen. There exist two datasets D1 and D2 that differ in
the data of a single user, such that the difference betweenM (D1) andM (D2) is arbitrarily
large, at least for some outputs. This seems bad!

However, the “attack” above is not convincing to laypeople: it feels too artificial. Surely,
they say, a realistic attacker cannot craft an arbitrary pair of datasets D1 and D2 and observe
the results. They do not control the data, nor do they have perfect knowledge about it. If the
data is heavily aggregated, for example using k-anonymity with a reasonably large k, can an
attacker really find out sensitive information about individuals?

In practice, aggregated data is frequently being published without noise, under the assump-
tion that this is safe enough. The most prominent example is probably voting: it would be
unacceptable to add noise to the tally of a democratic election, yet nobody seems to worry
that publishing the exact count might somehow constitute a privacy risk. The intuition behind
this hinges on the implicit assumption that the secrecy of votes makes the result uncertain,
from the point of view of any realistic attacker.

85
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Can this intuition be formalized? We saw in Section 2.2.5 that this idea is not new, and
that multiple variants of differential privacy were introduced to capture an attacker with
uncertainty over the input data. In this chapter, we focus on this specific setting. We show
that modeling this scenario correctly is much more difficult than it initially appears, but
that a careful analysis can formalize the above intuition, draw novel links between syntactic
definitions like k-anonymity and differential privacy, and be used to derive negative results on
problems that are impossible to solve in a privacy-preserving way.

On the theory front, we start by reviewing existing definitions formalizing the scenario
where the attacker only has partial knowledge over the data. We point out fundamental flaws
in existing notions in the case where there are correlations in the data, and introduce an
additional criterion that is needed to fix these definitional problems. We then delineate two
cases that behave differently in the presence of partial knowledge: whether the attacker can
influence the input dataset, or whether they have a passive partial knowledge about the original
data.

We then use this novel theory to formalize positive results in our setting of interest. We
show that aggregating the data of many users does provide privacy guarantees under the
partial knowledge assumption, by drawing links between this setting and amplification by
shuffling. We also show that thresholding is an effective privacy-preserving strategy against
passive attackers, and use this insight to derive new links between k-anonymity and differential
privacy.

Finally, we show that even under this assumption of partial knowledge, some use cases
cannot be solved in a privacy-preserving way. In particular, we study cardinality estimators,
data structures that can estimate the cardinality of large datasets, and that can be merged while
removing duplicates: this class of algorithms cannot be made private, even under extremely
weak assumptions.

3.1 definitional intricacies of partial knowledge

As we saw previously, differential privacy models strong attackers that can not only learn, but
also influence, all but one element from the input dataset. While this strong attacker model
over-approximates realistic attackers, it can also lead to overly cautious choices of noise
parameters, unnecessarily deteriorating the algorithms’ accuracy. Relaxing the assumptions
about attackers’ background knowledge and their influence on the dataset can lead to smaller
noise parameters and, in turn, to more accurate results.

In some scenarios [373], one cannot exclude that the attacker might be able to influence
the entire dataset. But there are many natural scenarios in which the risk of an attacker
injecting a large number of data points into the dataset is negligible: censuses, phone polls, or
elections are natural examples1. In those cases, it is appropriate to consider privacy guarantees
that model weaker attackers without influence over the dataset, but with some background
knowledge. While the precise estimation of an attacker’s capabilities may be difficult, a

1 This implicitly assumes the absence of malicious insiders with direct access to the collected data, but those could break
privacy anyway by leaking the entire dataset, so anonymization becomes irrelevant.
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more balanced privacy analysis should characterize the privacy leakage against attackers with
varying degrees of background knowledge and influence over the dataset.

As we show in this section, while there is a rich body of prior work on differential
privacy with partial knowledge [36, 46, 116, 228, 254, 326], it fails to account for data with
correlations, and it does not make the attacker model explicit and precise. In this section,
we provide a theoretical foundation for answering these questions. Our formalism solves
the problems that previous definitions encounter when the data contains correlations, and it
clearly delineates between attackers that only have some background knowledge and attackers
that can influence the data. Our main contributions are as follows.

First, we show that existing notions of privacy under partial knowledge break down
when the data contains correlations, allowing very revealing mechanisms to be mistakenly
considered private. We propose a practical criterion and approach to fix this class of issues.

Second, we show that there are two distinct ways to model partial knowledge, depending
on whether the attacker can only learn some properties of the data or can modify the data.
We define two corresponding notions of privacy under partial knowledge: active partial
knowledge, where the attacker can influence the dataset, and passive, where the attacker is
unable to influence the dataset. We show that these notions have natural properties, and prove
that they are equivalent for a large class of common mechanisms and assumptions over the
data. Moreover, we show that the active partial knowledge assumption can be used to alleviate
the challenge of precisely estimating the dataset distribution.

3.1.1 Related work

Among the numerous variants of differential privacy listed in Chapter 2, two main variants
model adversaries with partial background knowledge, using indistinguishability: noiseless
privacy [46, 116], and distributional DP [36]. This work discusses the shortcomings of
distributional DP in Section 3.1.2, and Section 3.1.3 uses the formalism of noiseless privacy
to define active and passive partial knowledge DP.

Other variants, which also model adversaries with partial background knowledge, are not
based on indistinguishability, but directly constrain the posterior knowledge of an attacker as
a function of their prior knowledge. Among those are adversarial privacy [326], membership
privacy [254], and aposteriori noiseless privacy [46]. It is straightforwards to adapt the
examples given in this chapter to show that these definitions suffer from the same flaws as
noiseless privacy when data has correlations. Because of space constraints, we do not study
them in detail.

Several other definitions have been proposed. Pufferfish privacy [228] can be seen as
a generalization of noiseless privacy, and similarly, coupled-worlds privacy [36] (and its
inference-based variant) generalizes distributional differential privacy: instead of protecting
individual tuples, they protect arbitrary sensitive properties of the data. It is straightforward to
generalize our results to the more generic frameworks.
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3.1.2 Correlated data

When data is correlated, dependencies create problems for privacy definitions that assume
an attacker with partial knowledge. To illustrate this, we recall two previously introduced
definitions that model this situation differently: noiseless privacy (NPr) and distributional
differential privacy (DistDP). We show that both definitions have undesirable consequences
when data is correlated, and use DistDP as a starting point to solve this problem in two steps.
First, we modify DistDP and introduce a new definition, causal differential privacy (CausDP),
to prevent its most direct problems. Second, we propose a criterion that encompasses many
use-cases but avoids known issues with correlated data, and makes CausDP equivalent to NPr.
This allows us to cleanly define a rigorous notion of DP with partial knowledge, which allows
for many practical use cases, but avoids the known issues with correlated data.

Note that there has been substantial debates about the impact of correlations on the
guarantees that DP provides. The debates are summarized in [368], where the authors suggest
a possible resolution: interpreting DP as a causal property. In this section, we continue this
line of work in the context of partial knowledge. In particular, we show that modifying the
definition in the same way as the “causal variants” of [368] is not sufficient to solve all
issues created by the presence of correlations in the data, when the attacker only has partial
knowledge.

For simplicity, in this section, we only consider the case with δ = 0. We re-introduce δ > 0
in Section 3.1.3.

3.1.2.1 Existing notions

The assumption that the attacker lacks background knowledge can be represented by consider-
ing the input data to be noisy. This idea was first proposed in [116], and was formalized in [46]
as noiseless privacy. Instead of comparing two databases that differ in only one record, it uses
a probability distribution θ, conditioned on the value of one record D(i): the randomness in θ
captures the attacker’s uncertainty. This probability distribution generates not only a dataset
D but also the attacker’s partial knowledge B (with values in some space B). For brevity,
we abbreviate P(D,B)∼θ as Pθ, abbreviate the observation D = D̂ by D̂, and the observation
B = B̂ by B̂; these notations as well as others used in this paper are summarized in the
notation table on page xviii.

Definition 49 ((Θ, ε)-noiseless privacy [46]). Given a family Θ of probability distribution
onD×B, a mechanismM is (Θ, ε)-noiseless private (NPr) if for all θ ∈ Θ, all B̂ ∈ B, all
indices i and all t, t′ ∈ T such that Pθ

[
B̂, D(i) = t

]
, 0 and Pθ

[
B̂, D(i) = t′

]
, 0 (we call

this condition “B̂ is compatible with D(i) = t and D(i) = t′”):

M (D)|θ,B̂,D(i)=t ≈ε M (D)|θ,B̂,D(i)=t′ .

Here, the notationM (D)|θ,B̂,D(i)=t refers to the random variable defined byM (D), where
D ∼ θ, conditioned on the event “B = B̂ and D(i) = t”.

Note even though we make the attacker’s partial knowledge B̂ explicit, we could simplify the
definition to not mention it explicitly. Indeed, for each distribution θ ∈ Θ with values inD×B,



3.1 definitional intricacies of partial knowledge 89

we could simply take all possible background knowledges B̂ generated by θ, and consider
the family of distributions θ|B̂, which only generate a dataset D. We use this conceptual
simplification in Definition 33 and Definition 34, in Section 2.2.5. This simplification is no
longer possible if we use (ε, δ)-indistinguishability with δ > 0, as we show in Section 3.1.3.

The original intuition behind DP states that changing one record must not change the output
too much. NPr attempts to capture this intuition for an attacker with partial knowledge, but
Bassily et al. [36] argue that this definition is too strong. The following example illustrates
their argument.

Example 1. Assume θ has a global parameter µ that is either +1 or -1 with equal probabilities,
and outputs n normally distributed records with mean µ and a small standard deviation.
Releasing the average of the record values is not NPr: for all indices i,M (D)|θ,D(i)=1 will
be close to 1 and M (D)|θ,D(i)=−1 will be close to −1, so the two distributions are very
distinguishable. This happens even though the impact of a single record in the database is
low: once µ is fixed, the random choice of i is unlikely to have a large effect on the global
average.

This example shows a definitional problem. If the attacker previously knows µ, revealing
M (D) does not give much additional information on the target D(i): an attacker with less
initial knowledge is considered more powerful. We study this in detail in Section 3.1.2.3.

The authors propose an alternative definition to fix this problem: (Θ, ε)-distributional
differential privacy. It requires thatM can be simulated by another mechanism Sim, that
does not have access to the sensitive property. The intuition is as follows: ifM (D) is close to
Sim (D−i) for some simulator Sim, thenM cannot leak “too much” about the value of D(i).

Definition 50 ((Θ, ε)-distributional differential privacy [36]). Given a family Θ of probability
distributions on D×B, a mechanismM satisfies (Θ, ε)-distributional differential privacy
((Θ, ε)-DistDP) if there is a simulator Sim such as for all probability distributions θ ∈ Θ, all
B̂ ∈ B, all i, and all t ∈ T such that B̂ is compatible with D(i) = t:

M (D)|θ,B̂,D(i)=t ≈ε Sim (D−i)|θ,B̂,D(i)=t ,

where D−i is the database D from which the record i has been removed.

The distribution θ and the mechanismM = avg from Example 1 satisfy this definition:
the simulator can be defined as simply runningM on D−i, possibly after adding +1 or −1
depending on the other records.

3.1.2.2 Distributional differential privacy under correlations

This critique of NPr is similar to the critique of the associative view of DP in [368]. But the
proposed fix has a flaw: Sim can use strong dependencies in the data to artificially satisfy the
definition. In the following example, the values of different records are strongly correlated,
and the simulator cheats by using these correlations: consequently, the identity function is
considered private!
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Example 2. Let θ output n duplicate records: for all i < n, D(2i) is picked from some
probability distribution R, and D(2i + 1) = D(2i). Then the identity function Id, which
simply outputs its input without any noise, is ({θ}, 0)-DistDP! Indeed, the simulator can
simply replace the missing record by its duplicate and output the entire database: Id(D) is
exactly the same as Sim (D−i).

Here, the dependency relationships are “extreme”, as each record is duplicated. But even
when records are less strongly correlated, the problem is still present. In fact, the more
dependencies are in the data, the more accurately the simulator can simulate the missing
record, and the more “private” the mechanism is (since ε gets lower): a more powerful
adversary, who can exploit dependencies in the data, is considered weaker by the definition.
This is clearly undesirable.

How can we formalize an adversary that cannot “cheat” using dependencies in the data? We
propose one possible option: using the same technique as the causal variants of DP described
in [368], we simply change the target record after the distribution is generated.

Definition 51 ((Θ, ε)-causal differential privacy). Given a family Θ of probability distribu-
tions onD×B, a mechanismM satisfies (Θ, ε)-causal differential privacy ((Θ, ε)-CausDP)
if for all probability distributions θ ∈ Θ, all i, all t, t′ ∈ T , and all B̂ ∈ B compatible with
D(i) = t and D(i) = t′:

M (D)|θ,B̂,D(i)=t ≈ε M (Di→t′ )|θ,B̂,D(i)=t ,

where Di→t′ is the database D, where the i-th record has been replaced by t′.

CausDP still captures DP’s intuition: the change in one data point should not influence
the output of the mechanism too much. However, the change happens after the influence of
the dependencies in the data. This version is strictly stronger than the original version: if a
mechanismM is (Θ, ε)-CausDP, then it is also (Θ, ε)-DistDP. Indeed, the simulator Sim
can always replace the missing record with an arbitrary value b and returnM (Di→t′ ).

In [36], the authors also introduce an inference-based version of DistDP. We can as easily
adapt CausDP to this different formalization.

Definition 52 ((Θ, ε)-inference-based causal differential privacy). Given a family Θ of
probability distributions onD×B, a mechanismM satisfies (Θ, ε)-inference-based causal
differential privacy ((Θ, ε)-IBCDP) if for all probability distributions θ ∈ Θ, for all indices i,
all b ∈ T , all t ∈ O, and all B̂ ∈ B compatible withM (D) = t andM (Di→t′ ) = t:

D(i)|θ,B̂,M(D)=t ≈ε D(i)|θ,B̂,M(Di→t′ )=t

where Di→t′ is the database D, where the record i has been replaced by b.

Note that this definition is equivalent to the indistinguishability-based version (Defini-
tion 51) up to a change in parameters.

Proposition 21. (Θ, ε)-CausDP implies (Θ, 2ε)-IBCDP, and (Θ, ε)-IBCDP implies (Θ, 2ε)-
CausDP.
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Proof. The first implication can be proven in the same way as Theorem 1 in [36], replacing
Sim (D−i) byM (Di→t′ ). For the second implication, suppose that a mechanismM is (Θ, ε)-
IBCDP, and assume that the attacker has no background knowledge. Consider an index i, two
possible record values t, t′ ∈ T , and one possible output value O ∈ O. Bayes’ rule gives us:

P [M (Di→t′ ) = O|D(i) = t]
P [M (D) = O|D(i) = t]

=
P [D(i) = t|M (Di→t′ ) = O]

P [D(i) = t|M (D) = O]
·

P [M (D) = O]

P [M (Di→t′ ) = O]
.

The first term is between e−ε and eε sinceM is (Θ, ε)-IBCDP. We only need to show that the
second term is also between e−ε and eε to conclude the proof. Notice that when D(i) = t′,
we have Di→t′ = D. Thus:

1 =
P [M (Di→t′ ) = O|D(i) = t′]

P [M (D) = O|D(i) = t′]
=

P [D(i) = t′|M (Di→t′ ) = O]

P [D(i) = t′|M (D) = O]
·

P [M (Di→t′ ) = O]

P [M (D) = O]
.

Again, the first term is between e−ε and eε sinceM is (Θ, ε)-IBCDP. Since multiplying it
with the second term gives 1, the second term is also between e−ε and eε. If the attacker
has background knowledge, all the probabilities above are conditioned by B̂, and the same
reasoning holds.

In the more general case where the attacker does have some partial knowledge, all proba-
bilities above are conditioned by the value of this partial knowledge, and the same reasoning
holds. �

This equivalence is only true in the context of this section, where δ = 0; we explain later
why it fails when δ > 0.

Does Example 1 satisfy CausDP? It depends: if b can take arbitrarily large values,
avg (Di→b) can be arbitrarily distinguishable from avg(D). Otherwise, b can only have
a bounded influence on the average and ({θ} , ε)-CausDP can hold for some ε. In other words,
when using the fixed version of the definition, whether a given mechanism is CausDP depends
on the sensitivity of the mechanism. This is a good thing: it suggests that it captures the same
intuition as DP.

Example 1 shows that CausDP is not stronger than NPr. Is the reverse true? In Example 3,
we show that this is not the case.

Example 3. Consider the same θ as for Example 1: it depends on a global parameter, µ,
which is either +1 or -1 with equal probabilities, and each of the n records is normally
distributed with mean µ and a small standard deviation σ. Let M be the algorithm that
counts outliers: it computes the average µ̃ of all data points, and returns the number of
records outside [µ̃ − 5σ, µ̃+ 5σ]. As we saw before, conditioning θ on a value of D(i) is
approximately equivalent to fixing µ: the number of outliers is going to be the same no matter
what (0 with high probability). However, if we first condition θ on D(i) = t, and then change
this record into t′, we can choose t′ so that this record becomes an outlier; and make it 1 with
high probability. Thus, this mechanism is NPr but not CausDP.

Even though Example 3 shows that NPr does not imply CausDP, it is natural to think that in
many cases, if you change one data point D(i) as well as all data points correlated with it, it
will have a bigger influence on the algorithm that if you only change D(i) without modifying
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the rest of the data. In Example 4, we show that even for a simple data dependencies and
mechanisms, we can find counterexamples to this intuition.

Example 4. Consider a probability distribution θ that outputs 2n records, such as for all
i < n, D(2i) is picked from some arbitrary probability distribution with values in N, and
D(2i + 1) = D(2i). Then the mechanism that sums all records might be in NPr, but cannot
be in CausDP. Indeed, if D ∼ θ, then

∑
i D(i) will always be even, but changing one record

without modifying its duplicate can make the sum odd.

This last example that finding a special case where NPr implies CausDP is likely difficult.
There is, however, a special case where both are equivalent: the absence of dependencies in
the data. If changing one record does not influence other records, then NPr and CausDP are
equivalent. This result is similar to Corollary 2 in [36], but is simpler and without the change
in parameters.

Proposition 22. Let Θ be a family of probability distributions such that for all θ ∈ Θ and
all B̂ ∈ B, the random variables D(i)|θ,B̂ are mutually independent. Then a mechanismM is
(Θ, ε)-NPr iff it is (Θ, ε)-CausDP.

Proof. Under these conditions, D−i |θ,B̂,D(i)=t is the same as D−i |θ,B̂,D(i)=t′ ; as an immediate
consequence,M (D)|θ,B̂,D(i)=t′ is the same asM (Di→t′ )|θ,B̂,D(i)=t. The statement follows.

�

This natural property, combined with the better behavior of CausDP in scenarios like
Example 2, might seem like CausDP is a better alternative to CausDP, when one wants to
capture an attacker with partial knowledge, under the causal interpretation of differential
privacy. However, even with this fix, when records are not independent, CausDP is not always
safe to use. We present an example from Adam Smith (personal correspondence, 2018-09-28)
showing that a slightly modified version of the identity function can still be CausDP if records
are strongly correlated.

Example 5. Let θ output 3n triplicated records: for all i < n, D3i is picked from some
probability distribution R, and D(3i + 1) = D(3i + 2) = D(3i). LetM be a mechanism
that “corrects” a modified record: if there is a record value x appearing only once, and a
value y appearing only twice, thenM changes the record x to y; thenM always outputs the
entire database. It is easy to check thatM is ({θ}, 0)-CausDP.

This example is more artificial than Example 2, as the mechanism itself “cheats” to use
dependencies in the data. Nonetheless, it shows that some mechanisms that leak the full
database can be CausDP. Thus, using CausDP as a privacy measure of a given mechanism
is dangerous if no information about the mechanism is known. We do not know whether
more natural mechanisms could lead to similar counterexamples, for certain classes of
probability distributions; but it is clear that simply applying the same technique as the causal
variants of [368] is insufficient to solve entirely the problems with correlations under partial
knowledge.
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3.1.2.3 Imposing an additional criterion on the definition

In this section, we propose a criterion that the distribution θ must satisfy before NPr can be
used. We argue that when this criterion is not satisfied, NPr is not a good measure of the
privacy of a mechanism. But when it is satisfied, we obtain natural properties that are false
in general: NPr and CausDP are equivalent, and attackers with more partial knowledge are
stronger.

We mentioned previously that NPr was not monotonous: an attacker with more knowledge
can be considered to be less powerful. In Example 1, an attacker A who did not know µ can
learn µ by observingM (D). This increases their knowledge about D(i): they now know that
D(i) is probably around µ, a fact previously unknown. However, an attacker B, who already
knew µ, does not increase their knowledge as much when observingM (D). Example 2 and
Example 5 show that DistDP and CausDP also suffer from this issue. How can we fix this
problem? The informal goal is that an attacker with more background knowledge should gain
more information. We must make sure that the privacy quantification ε cannot be artificially
inflated by non-sensitive information learned by the attacker.

In all previous examples, the attacker’s partial knowledge is strongly correlated with the
sensitive information. Thus, ε does not measure the privacy loss due to the mechanism, but
also takes into account the prior knowledge from the attacker about the sensitive attribute.
Modeling the attacker’s uncertainty is necessary to formalize their partial knowledge, but
the only thing that should be captured by ε is the mechanism’s privacy leakage. To ensure
this is the case, we argue that the partial knowledge must be independent from the sensitive
information, and we propose a formalization that enforces this distinction between sensitive
information and partial knowledge.

To this end, we propose an alternative way to model the attacker’s uncertainty, and suggest
to normalize the distribution θ to cleanly separate sensitive information and partial knowledge.
We show that if such a normalization exists, then an attacker with more partial knowledge is
more powerful. Thus, the existence of such a normalization is a desirable property for privacy
definitions that model an attacker with partial knowledge, and we argue that it should serve
as a criterion that must be satisfied before using such definitions, in order to get meaningful
results.

How to formalize the intuition that the sensitive information should be separated from the
partial knowledge? The core idea is to express θ as the output of a generative function, with
independent random parameters. Each possible value of these parameters corresponds to a
possible database.

Definition 53 (Normalization of data-generating distributions). A normalization of a proba-
bility distribution θ is a family of mutually independent random variables (φ0, . . . , φk), and
an injective, deterministic function θ̂, such that θ = θ̂ (φ0, . . . , φk).

A normalization de-correlates the distribution: it splits its randomness into independent
parts φi. The φi can then play distinct roles: one parameter can capture the sensitive property,
while the others can model the attacker’s partial knowledge. We capture this additional
requirement in the following definition.
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Definition 54 (Acceptable parameters). Given a distribution θ with values in D× B, an
acceptable normalization of θ at index i is a normalization θ̂ (φ0, . . . , φk) where:

1. φ0 entirely determines the sensitive attribute D(i): there exists a function f such that
for all possible values of D(i), Pθ [ f (φ0) = D(i)] = 1.

2. Some of the φ1, . . . , φk entirely determine the partial knowledge: there exists I ⊆
{1, . . . , k} and an injective function g such that Pθ

[
g
(
(φ j) j∈I

)
= B

]
= 1.

A family of distributions Θ is acceptable if each θ ∈ Θ has an acceptable normalization at all
indices i.

In practice, we can simply consider a family (φ j) j∈I for some I to be the attacker’s partial
knowledge, rather than using a bijection. When partial knowledge is defined using a subset of
parameters, an attacker has more partial knowledge when they know more parameters.

Informally, φ0 must contain enough information to retrieve the sensitive attribute, and the
partial knowledge must be independent from it. How can we normalize the θ in Example 1?
We cannot have one parameter for µ, and n parameters for the noise added to each record:
the sensitive attribute D(i) would require two parameters to express. Rather, φ0 could be a
pair containing both µ and the noise added at i, D(i) − µ. The attacker’s partial knowledge
can be D( j) − µ, for j , i, without µ. In other words, µ itself is also sensitive. What if we
do not want to consider µ as sensitive? Then, φ0 can be the value of the noise added to the
record i, D(i) − µ, and µ is another parameter that can (or not) be part of the attacker’s partial
knowledge.

As this example shows, this separation between the partial knowledge and the sensitive
value forces us to carefully choose the sensitive value, and it prevents us from comparing
scenarios where the sensitive value varies. This formalism can now be used to precisely define
the relative strength of two attackers, based on their partial knowledge, and show that an
attacker with more knowledge is more powerful.

Definition 55 (Relative strength of partial knowledge). Given probability distributions θ1
and θ2 with values inD×B, we say that θ1 has more background knowledge than θ2 if the
three following conditions are satisfied.

1. D|θ1 = D|θ2 : the only difference between the probability distributions is the partial
knowledge.

2. For all i, there exists an acceptable normalization θ̂ (φ0, . . . , φk) given i that is common
to θ1 and θ2.

3. For all i, if we denote I1 and I2 the set of parameters that correspond to θ1 and θ2
respectively in this acceptable normalization, then I1 ⊇ I2.

Given two families of probability distributions Θ1 and Θ2, we say that Θ1 has more back-
ground knowledge than Θ2 if for all θ2 ∈ Θ2, there exists θ1 ∈ Θ1 such that θ1 has more
background knowledge than θ2.
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Proposition 23. Let Θ1 and Θ2 be two families of distributions such that Θ1 has more
background knowledge than Θ2. If a mechanismM satisfies (Θ1, ε)-NPr, it also satisfies
(Θ2, ε)-NPr.

Proof. Suppose thatM is (Θ1, ε)-NPr. For a distribution θ2 ∈ Θ2 and an index i, let θ1 ∈ Θ1
be such that θ1 is stronger than θ2. By definition, there exists an acceptable normalization
θ̂ (φ0, . . . , φk) common to θ1 and θ2. Let f be the function extracting the sensitive value from
φ0 in this normalization. Denoting I1 and I2 the set of parameters corresponding respectively
to θ1 and θ2, as a simplification, we assume that I2 = ∅ and I1 = {1}; it is straightforward to
adapt the proof to the more generic case. For any output O, and all values t, t′ ∈ T , we can
decompose:

P [M (D) = O
∣∣∣ f (φ0) = t]

=
∑

B̂

P
[
φ1 = B̂

∣∣∣ f (φ0) = t
]
·P

[
M (D) = O

∣∣∣ f (φ0) = t, φ1 = B̂
]

.

The φi are independent: P
[
φ1 = B̂

∣∣∣ f (φ0) = t
]

is the same as P
[
φ1 = B̂

∣∣∣ f (φ0) = t′
]
.

SinceM satisfies (Θ1, ε)-NPr, we also have for all B̂:

P
[
M (D) = O

∣∣∣ f (φ0) = t, φ1 = B̂
]
≤ eεP

[
M (D) = O

∣∣∣ f (φ0) = t′, φ1 = B̂
]

.

Thus:

P [M (D) = O
∣∣∣ f (φ0) = t]

≤ eε
∑

B̂

P
[
φ1 = B̂

∣∣∣ f (φ0) = t′
]
·P

[
M (D) = O

∣∣∣ f (φ0) = t′, φ1 = B̂
]

≤ eεP [M (D) = O
∣∣∣ f (φ0) = t′]

and thus,M satisfies (Θ2, ε)-NPr. Adapting the proof to cases where I1 ⊆ I2 is straightfor-
ward. �

This proposition states that, for acceptable distributions, partial background knowledge
can be formalized in a reasonable and intuitive way, guaranteeing that attackers with more
background knowledge are stronger. Another advantage is that when this criterion holds, NPr
and CausDP are equivalent.

Proposition 24. If Θ is an acceptable distribution, then for any ε and δ, (Θ, ε, δ)-NPr is
equivalent to (Θ, ε, δ)-CausDP.

The proof is the same as for Proposition 22. Figure 3.1 summarizes the relations between
the definitions introduced in this section.

Acceptable normalizations force practitioners to define which information is considered
private. If, like in DP, the sensitive information is the value of a given record, with an
acceptable normalization, the attacker’s partial knowledge cannot contain records correlated
with the target record. This might seem overly restrictive: what if the attacker does know
some information correlated with the target record? In this case, one must change the sensitive
information to only consider the decorrelated part as sensitive.
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NP

IB-CDP

CDP

When Θ is an
acceptable distribution DDP

Figure 3.1: Relations between definitions introduced in Section 3.1.2, assuming δ = 0.

To illustrate this process, consider a medical database where the diagnostic records of
different patients might be correlated. To find an acceptable normalization, we must choose
between two options. The first is to consider attackers that do not have information correlated
with the diagnosis of a given patient: in that case, we must protect the information of multiple
patients at once, similarly to DP under correlations (a variant of DP defined in [73]). Another
option is for the sensitive property to be the diagnosis of someone given the diagnosis of
those they are correlated with. We formally present a simpler example below, in Example 6.

Example 6. Consider a referendum, where people vote in pairs, with some amount of
correlation between pairs. More precisely, θ is a distribution that generates a database of 2n
records according to the following process:

• D(2i) = 1 with probability pi, and 0 with probability 1 − pi;

• D(2i + 1) = D(2i) with probability pc, and 1 − D(2i) with probability 1 − pc.

Suppose the attacker is interested in D(1). There are two ways of modeling this with an
acceptable normalization, depending on whether we want to allow the attacker to know D(0).

• We can pick φi to determine the value of both D(2i) and D(2i + 1). This way, φ0 is
sufficient to know the value of the sensitive information D(i), and is independent from
all φi for i > 0.

• We can also pick φ2i to be the event “D(2i) = D(2i + 1)”, and φ2i+1 to be the value
of D(2i). In that case, the attacker is allowed to know D(0), but the sensitive value
has changed: the sensitive value is whether D(0) = D(1); which is independent from
the actual value of D(0).

3.1.3 Passive vs. active attackers

In this section and the rest of this chapter, we assume that the criterion introduced in Defini-
tion 54 is satisfied: the data-generating distributions considered are always acceptable. For
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simplicity, we also assume that the sensitive property is the value of one record. Under these
conditions, any value of the partial knowledge B̂ is compatible with any value of the sensitive
record D(i) = t, since these two events are independent. This also allows us to only consider
the formalism of NPr; since it is equivalent with CausDP under this criterion (Proposition 24).

Correlations in the data are not the only issue to account for when limiting the attacker’s
background knowledge in DP. Another important question is whether the attacker simply
receives some partial knowledge passively, or whether the attacker can actively influence the
data. In this section, we show how to model these two situations by adapting the notion of a
privacy loss random variable to model an attacker with partial knowledge, and we explore the
relationship between the two corresponding definitions. To help understand this distinction,
in this section, we consider the following example.

Example 7 (Thresholding). 1000 people take part in a Yes/No-referendum. Each person
votes “Yes” with some probability, independently from the others. The mechanismM counts
the number of “Yes” votes, but only returns this if it is above 100; otherwise it returns ⊥. The
partial knowledge B contains the votes of 100 participants, and the attacker wants to know
the vote of another individual D(i). We will see that in case the probability that each person
votes “Yes” is very small (say, 10−7), the privacy of this scheme will depend on whether the
attacker is passive or active.

3.1.3.1 Privacy loss random variable for partial knowledge

In Section 2.2.2, we introduced the privacy loss random variable (Definition 13), defined as:

LMD1/D2
(O) = ln

P [M (D1) = O]

P [M (D2) = O]
.

The PLRV quantifies how much information is revealed by the output of a mechanism, and
we saw in Proposition 8 that a mechanismM is (ε, δ)-DP iff for all neighboring databases
D1 and D2, and all outputs O:

E
O∼M(D1)

[
max(0, 1 − eε−LD1/D2 (O))

]
≤ δ.

Now, suppose the attacker only has partial knowledge about the data. How to adapt
the definition of the PLRV to this setting? The data comes from a distribution θ, and the
attacker tries to distinguish between D(i) = t and D(i) = t′ by observingM (D), given
partial knowledge B̂. Since B̂ is given to the attacker prior toM (D), we must condition the
probabilities by B̂.

Definition 56 (PLRV for partial knowledge). Given a mechanismM, a distribution θ with
values inD×B, an index i, and values t, t′ ∈ T , the PLRV of an output Ô ∈ O given partial
knowledge B̂ ∈ B is:

L
M,θ
i←t/i←t′ (Ô, B̂) = ln

Pθ

[
M (D) = Ô

∣∣∣ D(i) = t, B = B̂
]

Pθ

[
M (D) = Ô

∣∣∣ D(i) = t′, B = B̂
] ,

using the convention x/0 = ∞ for all x.
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This PLRV captures the same idea as for classical DP: it quantifies the attacker’s information
gain. If B = D−i, this definition is the same as the classical PLRV.

Now that we translated the concept of PLRV to account for partial knowledge, we can use
it to adapt the privacy definition. The formula in Proposition 8 averages the PLRV over all
possible outputs O, but the PLRV with partial knowledge has a second parameter, B̂. How
should this new parameter be handled? There are at least two reasonable possibilities.

3.1.3.2 Active partial knowledge

The first option is to quantify over all possibilities for the attacker’s partial knowledge. We
assume the worst: we consider the case where the attacker’s partial knowledge causes the
privacy to be the greatest. This models a scenario where the attacker can not only see, but also
influence the data. If the attacker can, for example, add fake users to the database, then they
can choose the values associated to these new records to maximize the chances of information
gain. We therefore call this option active partial knowledge, short for “partial knowledge
under active attacks”.

Definition 57 (APKDP). Given a family of distributions Θ, a mechanismM is (Θ, ε, δ)-
APKDP (Active Partial Knowledge Differential Privacy) if for all distributions θ ∈ Θ, all
indices i, all t, t′ ∈ T , and all B̂ ∈ B:

E
θ|D(i)=t,B̂,O∼M(D)

[
max

(
0, 1 − eε−L

M,θ
i←t/i←t′ (O,B̂)

)]
≤ δ,

or, equivalently:
M (D)|θ,D(i)=t,B̂ ≈ε,δ M (D)|θ,D(i)=t′,B̂ .

The proof of this equivalence is the same as in Lemma 1 in [278], which makes it explicit
that APKDP is the same as NPr in its reformulation in [36]. As shown in [368], APKDP and
DP coincide whenever the attacker has full knowledge (when B = D−i).

With APKDP, a fixed part of the distribution can be arbitrarily determined. In Example 7,
this corresponds to having the attacker control some percentage of voters. Such an active
attacker can simply add many fake “Yes” votes to the database, to reach the threshold of 100:
this makes the thresholding pointless.M then becomes a simple counting query which does
not provide privacy: with high probability, everybody votes “No”, and the only uncertainty
left is over the attacker’s target.

In addition to modeling an active attacker, APKDP can also be used in scenarios where
θ is unknown, but can be approximated. The “partial knowledge” can represent the error
between the true distribution and the approximation and if APKDP is satisfied, then the
privacy property also holds for the true database.

Note that in this context, explicitly modeling the background knowledge B̂ is technically
not necessary. Instead, we could simply create a new family of probability distributions Θ′

by conditioning each θ ∈ Θ by the value of each possible B̂. We make this background
knowledge explicit instead, so APKDP is easier to compare with PPKDP, defined in the next
section.
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3.1.3.3 Passive partial knowledge

APKDP represents situations where the attacker can modify the data. An example is an online
service that publishes statistics about its use, where the attacker can interact with the service
before the usage statistics are published. Now, what if the attacker cannot interact with the
data? Consider e.g. researchers publishing the results of a clinical study about patients having
a medical condition. A typical attacker cannot influence the clinical data, but might have
some partial knowledge about other participants to the survey.

How can we model such a passive attacker, which has access to some information about
the data, but cannot influence it? It no longer makes sense to quantify over arbitrary partial
knowledge. In the same way that the reformulation of (ε, δ)-DP using the PLRV averages the
PLRV over all possible outputs, we must average the PLRV over all possible values of the
partial knowledge.

Definition 58 (PPKDP). Given a family of distributions Θ, a mechanism M is (Θ, ε, δ)-
PPKDP (Passive Partial Knowledge Differential Privacy) if for all distributions θ ∈ Θ, all
indices i, and all t, t′ ∈ T :

E
θ|D(i)=t ,O∼M(D)

[
max

(
0, 1 − eε−L

M,θ
i←t/i←t′ (O,B)

)]
≤ δ.

In this context, δ has a similar meaning as in (ε, δ)-DP: it captures the probability that the
attacker is lucky. In (ε, δ)-DP, it means that O allows the attacker to distinguish between D1
and D2 with high probability, or, equivalently, that the PLRV associated to output O is large.
In (ε, δ)-PPKDP however, δ captures the probability of the attacker getting either a favorable
output O, or a favorable partial knowledge B.

With PPKDP, the thresholding mechanism of Example 7 is private. Indeed, with high prob-
ability, the partial knowledge will have only “No” votes; and almost certainly, the mechanism
will output ⊥ and gives no information. We formalize this intuition in Section 3.2.2.

Note that as opposed to APKDP, PPKDP cannot be easily reformulated using (ε, δ)-
indistinguishability. Since the statement B = B̂ conditions both probabilities, the δ in (ε, δ)-
indistinguishability only applies to the randomness ofM. To use an indistinguishability-based
formulation, we would need to use δ twice, and (for example) explicitly require that (ε, δ)-
indistinguishability holds with probability 1 − δ over the choice of B̂.

Remark 1. PPKDP shares some characteristics with inference-based distributional differ-
ential privacy (IBDDP), introduced in [36]. A mechanismM satisfies IBDDP if there is a
simulator Sim such that for all probability distributions θ ∈ Θ, and indices i, the statement:

D(i)|θ,M(D)=Ô,B̂ ≈ε,δ D(i)|θ,Sim(D−i)=Ô,B̂

holds with probability 1 − δ over the choice of Ô and B̂.
Leaving aside the simulator, note that δ is used in two separate parts of the definition:

both over the choice of Ô and B̂, and in the indistinguishability. As such, it is difficult see
intuitively what δ corresponds to, and the interpretation based on the “probability that the
attacker gets more information than eε” is not correct. This is one of the reasons why a
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PLRV-based formulation is more convenient: δ can simply be interpreted in the same way as
in (ε, δ)-differential privacy.

Further, the strict implication between DistDP and IBDDP proven in [36] can be explained
by a similar distinction between an active and a passive attacker, even if it is not made explicit
in the original paper. Indeed, when δ > 0, this δ applies only to the indistinguishability prop-
erty of DistDP, and DistDP quantifies over all possible values of the background knowledge:
the attacker is assumed to be able to choose the most favorable value of the background
knowledge. In contrast, with IBDDP, δ is applied both to the indistinguishability property and
to the choice of the background knowledge; hence the attacker is implicitly assumed to get
the background knowledge randomly.

3.1.3.4 Relation between definitions

In this section, we formalize the relation between PPKDP and APKDP and show basic results
on those definitions.

First, APKDP and PPKDP satisfy both privacy axioms proposed in [225], which we
reproduced in Definition 9 in Section 2.2.1. These axioms express natural properties that we
expect to be true for any reasonable definition of privacy.

Proposition 25. PPKDP satisfies the post-processing axiom: if a mechanismM is (Θ, ε, δ)-
PPKDP, then for any function f , the mechanismM′ defined byM′(D) = f (M (D)) is also
(Θ, ε, δ)-PPKDP. It also satisfies the convexity axiom: if two mechanismsM1 andM2 are
both (Θ, ε, δ)-PPKDP, then the mechanismM that appliesM1 with some probability p and
M2 with probability 1 − p is also (Θ, ε, δ)-PPKDP.

APKDP also satisfies these axioms.

Proof. For APKDP, the reformulation of the definition using classical (ε, δ)-indistinguishability
makes the result straightforward: the proof is the same as for (ε, δ)-DP. For PPKDP, we
first reformulate the definition using f -divergence. Let f (x) = max(0, 1 − eεx). Then a
mechanismM is (Θ, ε, δ)-PPKDP iff:∑

B̂

P
[
B̂

∣∣∣ D(i) = t
]

D f
(
M (D)|θ,D(i)=t,B̂ ‖M (D)|θ,D(i)=t′,B̂

)
≤ δ.

This view allows us to use the monotonicity and joint convexity properties of the f -divergence
to immediately prove the result for PPKDP. �

We saw that (ε, δ)-APKDP bounds the probability mass of the PLRV above ε by δ, for
all possible partial knowledge B̂. By contrast, PPKDP bounds the same probability mass,
averaged over all possible values of B̂, weighted by their likelihood. We formalize this
interpretation and use it to show that APKDP is, as expected, stronger than PPKDP. More
surprisingly, we also use it to show that when δ = 0, both definitions are equivalent.

Theorem 1. Given a distribution θ, a mechanismM, an index i, two values t, t′ ∈ T , an
output O, a possible value of the partial knowledge B̂, and a fixed ε > 0, let us denote
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m
(
O, B̂

)
= max

(
0, 1 − eε−L

M,θ
i←t/i←t′ (O,B̂)

)
. The respective quantities bounded by the require-

ments of APKDP and PPKDP are:

APKi,t,t′,B̂ = E
θ|D(i)=t,B̂,O∼M(D)

[
m

(
O, B̂

)]
and:

PPKi,t,t′ = E
θ|D(i)=t ,O∼M(D)

[m (O, B)]

= E
θ|D(i)=t

[APKi,t,t′,B] .

As an immediate consequence, ifM is (Θ, ε, δ)-APKDP, then it is also (Θ, ε, δ)-PPKDP.
Further, (Θ, ε)-PPKDP and (Θ, ε)-APKDP are equivalent.

Proof. We decompose PPKi,t,t′ depending the value of B.

PPKi,t,t′ =
∑
D̂,B̂

P
[
D = D̂, B̂

∣∣∣ D(i) = t
]

E
O∼M(D̂)

[
m

(
O, B̂

)]
=

∑
B̂

P
[
B̂

∣∣∣ D(i) = t
]∑

D̂

P
[
D = D̂

∣∣∣ D(i) = t, B̂
]
· E

O∼M(D̂)

[
m

(
O, B̂

)]
=

∑
B̂

P
[
B̂

∣∣∣ D(i) = t
]

E
θ|D(i)=t,B̂,O∼M(D)

[
m

(
O, B̂

)]
=

∑
B̂

P
[
B̂

∣∣∣ D(i) = t
]

APKi,t,t′,B̂

= E
θ|D(i)=t

[APKi,t,t′,B] .

For the second part of the statement, if the mechanism is (ε, δ)-APKDP, then for all i, t, t′,
and B̂, APKi,t,t′,B̂ ≤ δ, so:

PPKi,t,t′ = E
θ|D(i)=t

[APKi,t,t′,B]

≤ E
θ|D(i)=t

[δ]

≤ δ.

For the last part of the statement, assume thatM is (Θ, ε)-PPKDP. Then:

0 = PPKi,t,t′ = E
θ|D(i)=t

[APKi,t,t′,B] .

All summands are non-negative, so the sum can only be 0 if all summands are 0: for all B̂,
APKi,t,t′,B̂ = 0, andM is (Θ, ε)-APKDP. �
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When δ > 0, the implication is strict: the PLRV can be arbitrarily higher for certain values
B̂ of the background knowledge. Thus, quantifying over all possible values B̂ can lead to much
larger values of ε and δ than averaging over all possible values of the background knowledge:
Example 7 illustrates this phenomenon. When δ = 0 however, ε-APKDP and ε-PPKDP
are both worst-case properties, like ε-DP: an attacker’s ability to choose the background
knowledge does not matter, since even for the passive attacker, we need to consider the worst
possible output O and background knowledge B.

3.1.3.5 Θ-reducible mechanisms

For some mechanisms and probability distributions, active attackers are, perhaps surprisingly,
not more powerful than passive attackers, even when δ > 0. We introduce here a necessary
condition for APKDP and PPKDP to be equivalent and we show that this condition appears
in natural contexts.

Consider the example of a referendum where 2000 users take part in a vote with two
options. Each user i votes “yes” with probability pi, and “no” with probability 1 − pi. The
mechanismM returns the exact tally of the vote. We assume that the attacker knows half of
the votes: their partial knowledge is the vote of 1000 users. They might know that e.g. 500
of these users voted “yes”, 500 voted “no”, and the remaining 1000 votes are unknown. The
attacker aims to get information on the vote of their target.

Does it matter, in this situation, whether the attacker is passive or active? If the attacker
can choose the votes of 1000 users, they can decide that each known user will vote “yes”. But
changing these votes will only modify the tally in a predictable way: the attacker can remove
these votes from the total tally. Intuitively, it does not matter whether these known users all
vote “yes”, “no”, or have any other behavior known to the attacker. Without dependency
relationships between users, the attacker’s uncertainty solely resides in the unknown votes: a
passive attacker is not weaker than an active attacker.

We generalize this intuition via the concept of Θ-reducibility, which captures scenarios
where all possible values of background knowledge are equivalent from a privacy perspective.
We then show that under this condition, APKDP is equivalent to PPKDP, and formalize the
above example to show that it satisfies this condition.

Definition 59 (Θ-reducibility). A mechanismM is Θ-reducible if for all indices i, and all
B1, B2 ∈ B, there is a bijective mapping ϕi

B1,B2
: O → O such that for all t ∈ T and for all

O ∈ O:

Pθ [M (D) = O
∣∣∣ D(i) = t, B = B1] = Pθ

[
M (D) = ϕi

B1,B2
(O)

∣∣∣∣ D(i) = t, B = B2
]

.

This equivalence between possible outputs under B1 and B2 can be translated to an equiva-
lence between the corresponding PLRVs: ifM is Θ-reducible, then the global behavior of
L
M,θ
i←t/i←t′ (O, B1)|O∼M(D),D(i)=t and of LM,θ

i←t/i←t′ (O, B2)|O∼M(D),D(i)=t are the same. This
equivalence between PLRVs enables us to show that Θ-reducibility implies APKDP and
PPKDP are the same, even when δ > 0. So there are mechanisms and background knowledge
functions for which an active attacker is not stronger than a passive one.
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Theorem 2. Let Θ be a family of probability distributions, and let M be a Θ-reducible
mechanism. ThenM is (Θ, ε, δ)-APKDP iff it is (Θ, ε, δ)-PPKDP.

Proof. First, we show that for all O ∈ O and all B1, B2 ∈ B:

L
M,θ
i←t/i←t′ (O, B1) = L

M,θ
i←t/i←t′ (ϕB1,B2 (O), B2).

This statement directly follows by unfolding the definition ofLM,θ
i←t/i←t′ (O, B1) (Definition 56)

and Θ-reducibility (Definition 59):

L
M,θ
i←t/i←t′ (O, B1) = ln

Pθ [M (D) = O
∣∣∣ D(i) = t, B = B1]

Pθ [M (D) = O
∣∣∣ D(i) = t′, B = B1]

= ln
Pθ [M (D) = ϕB1,B2 (O)

∣∣∣ D(i) = t, B = B2]

Pθ [M (D) = ϕB1,B2 (O)
∣∣∣ D(i) = t′, B = B2]

= LM,θ
i←t/i←t′ (ϕB1,B2 (O), B2).

We can now prove Theorem 2. Since APKi,t,t′ is the expected value of PPKi,t,t′,B (Theo-
rem 1), it is enough to prove that for any B1 and B2, APKi,t,t′,B1 = APKi,t,t′,B2 . Recall that

m (O, B) = max
(
0, 1 − eε−L

M,θ
i←t/i←t′ (O,B)

)
, and fix B1 and B2 in B. We have:

APKi,t,t′,B1 =
∑
Ô

P
[
M (D) = Ô

∣∣∣ D(i) = t, B = B1
]

m
(
Ô, B1

)
=

∑
Ô

P
[
M (D) = ϕB1,B=B2 (Ô)

∣∣∣ D(i) = t, B = B2
]

m
(
ϕB1,B2 (Ô), B2

)
using Definition 59 and the technical result above. We can then reindex the sum using the
bijection Ô→ ϕB1,B2 (Ô), and conclude:

APKi,t,t′,B1 =
∑
Ô

P
[
M (D) = Ô

∣∣∣ D(i) = t, B = B2
]

m
(
Ô, B2

)
= APKi,t,t′,B2 .

�

Θ-reducible mechanisms are fairly common, especially under the natural assumption that
the attacker knows a fixed part of the dataset. We give a few examples.

Proposition 26. Let Θ be a family of distributions in which each θ generates the record of
each user independently, and assume that the background knowledge of the attacker is k fixed
records of the database, for a given k. Then the following mechanisms are Θ-reducible.

1. Counting queries: given a predicate P, the algorithm’s output is the number of records
for which P(D(i)) is true. This a generalizes binary voting.

2. Linear queries: given a fixed family of weights (αi), the mechanism returns
∑

i αiD(i).
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3. Different types of means: the arithmetic mean, the geometric mean, the harmonic mean,
and the quadratic mean (assuming all D(i) are positive).

Proof. Fix θ ∈ Θ. For counting queries, given B1, B2 ∈ B, define ϕcount
B1,B2,i(M (D)) =

M (D) −M (B1) +M (B2). This function is linear, so injective. Call θ′ the random distribu-
tion of the n − k records not present in B. Then for all a ∈ T and all O ∈ O:

Pθ [M (D) = O
∣∣∣ D(i) = t, B = B1]

= PD′∼θ′ [M (D′ ∪ B1) = O
∣∣∣ (D′ ∪ B1)i = t]

= PD′∼θ′
[
M (D′ ∪ B2) = ϕcount

B1,B2,i(O)
∣∣∣∣ (D′ ∪ B2)i = t

]
= Pθ

[
M (D) = ϕcount

B1,B2,i(O)
∣∣∣∣ D(i) = t, B = B2

]
.

For linear queries, we use a similar mapping to ϕ, which also depends on the mapping. Let
I be the indices of records present in B; then a linear query is Θ-reducible with:

ϕlinear
B1,B2,i(M (D)) =M (D) +

∑
j∈I

α j
(
(B2) j − (B1) j

)
.

This also proves the result for the arithmetic mean.
Similarly, it is easy to verify that the following ϕ functions show Θ-reducibility for the

geometric, harmonic and quadratic mean.

ϕ
geometric
B1,B2,i (M (D)) =

M (D)n
·

∏
j∈I (B2) j∏
j∈I (B1) j

1/n

ϕharmonic
B1,B2,i (M (D)) = n


(
M (D)

n

)−1

+
∑

j

 1
(B2) j

−
1

(B1) j



−1

ϕ
quadratic
B1,B2,i (M (D)) =

√√√√
n ·M (D)2 +

∑
j

(B2)
2
j − (B1)

2
j

n

The injectivity of each of these functions is clear. �

Note that in Proposition 26, it is crucial that the records in the attacker’s partial knowledge
are fixed. In general, knowing the records of k users is not equivalent to knowing the records
of k other users. Indeed, if these records are generated with different probabilities, the
randomness from the unknown records differs between both scenarios, and it is in general
impossible to convert one into the other.

Remark 2. Observation 1 in [176] claims that the partial knowledge of k records in a
database of size n is the same as no partial knowledge in a database of size n − k. For
counting queries, this holds for the same reason that counting queries are Θ-reducible: one
can “remove” the k known records from the mechanism output and obtain a bijection between
the cases with and without partial knowledge. Thus, the partial knowledge is irrelevant to the
mechanism’s privacy and can be ignored.
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This observation, however, does not hold in general: we later show in Example 7 that
counting queries with thresholding are not Θ-reducible, and in this case, the knowledge of
k records in a database of size n has a very different effect than no partial knowledge in a
database of size n − k.

3.2 opportunities: aggregations & thresholding

Consider a national referendum where more than 10 million people vote on a Yes/No question.
Do the exact results of this referendum reveal information about individuals? It is very
reasonable to assume that no realistic attacker has background knowledge of more than
99% of all votes. The remaining uncertainty of 1% of the data (100k data points) leads to
a significant uncertainty that can, if properly quantified, show that no attacker can use the
results of the referendum to determine how a given individual voted: the referendum results
are private, even if no noise was added to them.

In the previous section, we introduced conceptual tools to rigorously analyse such scenarios.
In this section, we build on these foundations to analyze such noiseless mechanisms and prove
strong and intuitive results about their privacy. We also analyze the conditions necessary to
use these notions in practical contexts, without making risky assumptions on their uncertainty
or capabilities. Our main contributions are as follows.

First, we provide a formal account of the privacy of common kinds of queries under partial
knowledge, using the tools introduced in the previous section. We show that counting queries
under partial knowledge can provide privacy, with significantly lower bounds than those
previously given.

Second, we show that thresholding—only returning the output if it is larger than a given
threshold—can render counting queries private against passive attackers, even when there is
not enough entropy in the data for the previous result to apply.

Third, we combine these results to show that under certain conditions, k-anonymity protects
against a passive attacker with partial knowledge. We discuss the genericity and the limits of
this result, which clearly delineates the conditions in which k-anonymity provides meaningful
protection.

Finally, we look at composition, a property that is crucial to the practical applicability of
privacy notions. We prove bounds for the sequential composition of noiseless mechanisms,
which allows us to quantify the privacy leakage of multiple mechanisms with the same
input, or of a mechanism repeated over time. We also look at nested composition: combining
the uncertainty coming from the attacker’s uncertainty with noise added to the result of
the aggregation. We show basic properties of such mechanisms, and explain how numeric
evaluation can be used to estimate the privacy loss in this context.

3.2.1 Counting queries

The initial motivation for limiting the attacker’s background knowledge was to show that,
under this assumption, some noiseless mechanisms preserve the individuals’ privacy [46]. A
typical example is a counting query, which answers the question “How many users satisfy P?”
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for some property P. We can model this by a data-generating distribution θ where each record
D(i) is either 0 or 1 with some probability pi, and we want to measure the privacy of the
mechanismM (D) =

∑
i D(i). Records are assumed to be independent, and the adversary is

assumed to know some portion of the records. As an immediate consequence of Theorem 2
and Proposition 26, it does not matter whether the attacker can modify, or only see, this
portion of records: the values of ε and δ are identical for APKDP and PPKDP.

Furthermore, the closer pi are to 0 or 1, the less randomness is present in the data. For
extremely small or large values of pi, the situation is very similar to one where the attacker
exactly knows D(i). As such, it is natural to assume that among the records that are unknown
by the attacker, all pi are between λ and 1 − λ, for some λ not too close to 0. This assumption
can easily be communicated to non-specialists: “we assume that there are at least 1000 records
that the attacker does not know, and that their level of uncertainty is at least 10% for these
records.”

Initial asymptotic results in this context appeared in [46] and more precise bounds were
derived in [176]. In the special case where all pi are equal to a fixed value p, Theorem 5 in [46]

and Theorem 1 in [176] show that counting queries are APKDP with ε = O
(√

ln(1/δ)
n

)
(for

small δ, and increasing n) and δ = e−Ω(ε2n) (for small ε, and increasing n). This provides
tiny values of ε and δ for moderate values of n and p. However, the assumption that all pi are
identical is unrealistic: in practice, there is no reason to assume that all users have an equal
chance of satisfying P. Theorem 7 in [46] and Theorem 2 in [176] show that without this

assumption, the ε obtained is still small: ε = O
(√

ln(n)
n

)
, but the upper bound obtained on δ

is significantly larger: δ = O
(

1√
n

)
. This is more than what is typically acceptable; a common

recommendation is to choose δ = o
(

1
n

)
.

In the following theorem, we show that the exponential decrease of δ with n still holds in
the general case where all pi are different. For simplicity, we assume that the attacker has no
background knowledge: because all records are independent, adding some partial knowledge
has a fixed, reversible effect on the output space, similarly to Θ-reducibility. In this case,
having the attacker know m records out of n is the same as having the attacker know no
records among n −m.

Theorem 3. Let θ be a distribution that generates n records, where D(i) is the result of an
independent Bernoulli trial of probability pi. Let λ be such that for all i, λ < pi < 1 − λ. Let
M be defined byM (D) =

∑
i D(i). ThenM is (Θ, ε, δ)-APKDP, for any ε and δ such that:

δ ≥ P

[ X
Y
≥ ε

]
where X and Y are independent random variables sampled from a binomial distribution with
n − 1 trials and success probability 2λ. For a fixed ε ≤ 1, this condition is satisfied if:

ε ≥ max


√

14 ln(1/δ)
λ(n − 1)

,
27

λ(n − 1)


which gives δ = e−Ω(ε2λn).
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Proof. The proof uses existing results on privacy amplification by shuffling: in [27, 140],
the authors show that adding noise independently to each data point, and then shuffling the
results (hiding from the attacker which record comes from which user), provide strong DP
guarantees. Even though our problem looks different, the same reasoning can be applied.
First, we show that θ can be seen as applying randomized response on each record. Then,
since a counting query is a symmetric boolean function, it can be composed with a shuffle of
its input, which allows us to use amplification by shuffling.

Let us formalize this intuition. A Bernoulli trial of probability pi (denoted Bernoulli (pi)),
with λ < pi < 1 − λ, can be decomposed into the following process:

• Generate b ∼ Bernoulli (2λ).

• If b = 0, return bνi ∼ Bernoulli
( pi−λ

1−2λ

)
.

• If b = 1, return brr ∼ Bernoulli (0.5).

This can be seen as a randomized response process applied on some input bνi , itself random:
θ = R2λ(ν), where ν is a distribution generating n records, where the i-th record is generated
by bνi ∼ Bernoulli

( pi−λ
1−2λ

)
, and R2λ is a binary randomized response process with parameter

2λ.
Further, note thatM can be seen as the composition between itself and a pre-shuffling

phase:M =M◦S, where S : D → D is a function that applies a random permutation to the
input records. Thus,M (D)|D∼θ = M (S (R2λ(D)))|D∼ν. We can now apply Theorem 3.1
in [27] and its proof to show that S ◦R2λ is (ε, δ)-DP for ε within the constraints above (with
k = 2 and γ = 2λ). By post-processing,M◦S ◦ R2λ is also (ε, δ)-DP, which directly yields
thatM is (ε, δ)-APKDP.

Note that we omitted a small technical detail: conditioning θ on D(i) = a is not identical
to conditioning ν on D(i) = a, since no noise is added to the record i in the former case. To
fix this, we need to define R2λ as randomizing all records except a fixed one i. The proof of
Theorem 3.1 in [27] assumes that no noise is added to the target record, so the result still
holds. �

We compare this result with the previous state-of-the-art. First, we reformulate a previously
known result from [176] that applies to our setting.

Proposition 27 (Theorem 3 in [176]). Let θ be a distribution that generates n records,
where D(i) is the result of an independent Bernoulli trial of probability pi, and letM be
defined byM (D) =

∑
i D(i). Let µ2 = 1

n
∑

i pi (1 − pi) and µ3 = 1
n
∑

i pi (1 − pi) |1 − 2pi|

be respectively the average second moment and average absolute third moment of the D(i).
Then for any δ2 ≥ 1.25e−nµ2/2,M is (θ, ε, δ)-APKDP, with

ε =

√
2 ln(1.25/δ2)

nµ2
and δ =

1.12µ3
√

nµ3
2

(1 + eε) + δ2.

Proof. For δ2 = 4
5
√

n
, this is a direct application of Theorem 3 in [176]. Changing the value

δ2 in its proof (Appendix A.2) allows us to obtain the more general formula above. This
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Figure 3.2: Comparison of (ε, δ) bounds given by Theorem 3 and Proposition 27, for λ = 0.05,
n = 100 (left) and n = 10,000 (right).
Case 1: all but one pi are 0.5. Case 2: the pi are distributed uniformly over [0.05, 0.95].

requires Fact 1 to be true, which is the case when ε ≤ 1 (the authors omit this detail), or
equivalently, when δ2 ≥ 1.25e−nµ2/2. �

The comparison between this result and Theorem 3 is not completely straightforward.
Aside from n, Theorem 3 only depends on a global bound on the “amount of randomness”
(pi) of each user, while Proposition 27 depends on the average behavior of all users. As
such, the global bound λ can be small because of one single user having a low pi, even if all
other users have a lot of variance because their pi is close to 0.5. We therefore provide two
experimental comparisons. In the first one, p1 = λ = 0.05 and pi = 0.5 for all i > 1. This
case is designed to have the parameters of Theorem 3 underperform (as we underestimate the
total amount of randomness) and those of Proposition 27 perform well. In the second one, the
pi are uniformly distributed in [λ, 1 − λ] = [0.05, 1 − 0.05]. In both cases, we compare the
(ε, δ) graphs obtained for n = 1000 and n = 100,000, and present the results in Figure 3.2.

The graphs show that if we consider the smallest possible ε given by the definitions,
our theorem leads to a large δ: with ε = Θ

(
1/
√

n
)
, we obtain δ = Θ(1); in contrast,

Proposition 27 leads to δ = Θ
(
1/
√

n
)
. However, increasing ε to slightly larger values

quickly leads to tiny values of δ, which was impossible with the previous state-of-the-art
results. They also show that the closed-form bound from [27] is far from tight, as numerically
computating these bounds improves them by several orders of magnitude. This leads to
a natural open question: is there a better asymptotic formulation of the bounds given by
amplification by shuffling for randomized response?

What is the impact of λ on the privacy guarantees? In Figure 3.3, we plot the ε obtained
for δ = 0.01/n as a function of λ, for various values of n.

One natural application for this result is voting: in typical elections, the total tally is released
without any noise. Adding noise to the election results, or not releasing them, would both
be unacceptable. Thus, the results are not (ε, δ)-DP for any (ε, δ) parameters, even though
publishing the tally is not perceived as a breach of privacy. The intuitive explanation for this
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Figure 3.3: Comparison of ε bounds given by the numerical computation of Theorem 3, with varying
λ, for various values of n and δ = 0.01/n.

is that attackers are assumed not to have complete background knowledge of the secret votes.
Our results confirm this intuition and quantify it. These results can easily be extended to votes
between multiple candidates.

Corollary 1. Let θ be a distribution that generates n records, where D(i) ∈ {1, . . . , K}
for K > 1, and where P [Di = k] = pi,k, and every record is independent from all others.
Let λ be such that for all i and all k, λ < pi,k. Let M return the histogram of all values:
M (D) = (N1, . . . , NK), where Nk is the number of records i such that D(i) = k. ThenM is
(Θ, ε, δ)-APKDP, for any ε ≤ 1 and δ > 0 such that:

ε ≥ max


√

14 ln(1/δ)
λ(n − 1)

,
27

λ(n − 1)

 .

Proof. The proof is the same as for Theorem 3. With multiple options, the parameter γ
of the multi-category randomized response is γ = Kλ, which leads to the same (ε, δ)
parameters. �

The results in this section apply to individual counting queries. This applies to scenarios
like votes, but in many practical use cases, multiple queries are released. Can the results of
this section be generalized to these cases? In general, noiseless mechanism do not compose.
For example, fixing an individual t, queries like “How many people voted 1?” and “How
many people who are not t voted 1?” can both be private on their own. However, publishing
both results will reveal t’s vote: the composition of both queries cannot be private. Are there
special cases where noiseless counting queries can be composed?

One such case happens when each counting query contains the data of a number of new
users, independent from users in previous counting queries. This can happen in situations
where statistics are collected on actions that each user can only do once, for example,
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registering with an online service. In this case, we can restrict the privacy analysis of each
new query to the set of independent users in its input, and use the previous results from this
section: this approach is formalized and proven in Theorem 1 in [46].

What if this approach is impossible, for example if there are dependencies between each
input record of each query? For example, a referendum could ask voters multiple questions,
with correlations between the different possible answers. Another example could be app usage
statistics published every day, where the data for day d + 1 for each user is correlated to the
user’s data on the previous day d. In this case, to compute the privacy loss of the first d binary
queries, we can consider them as a single query with 2d options. Afterwards, we can take into
account the temporal correlations to compute the probabilities associated with each option,
and use Corollary 1.

3.2.2 Thresholding

Theorem 3 gives good ε and δ parameters when there are many people who vote with “enough
randomness”: there is a λ such that λ < pi < 1 − λ. The parameters have a dependency on
λn, which in practice translates to scenarios where both options have large counts with high
probability. In many practical applications, however, it is hard to know in advance whether
this will be the case. Consider, for example, a mobile app gathering usage metrics on possible
sequences of actions carried by users within the app. Some sequences will be very probable,
and have high counts. But if there are arbitrarily many such sequences, some will be very
rare: like many practical distributions, there will be a long tail.

To protect the data from these outlier users, a typical protection employed is thresholding:
only return the user count associated with a sequence if it is larger than a given threshold
T . What level of protection does such a technique provide? In this section, we formalize
the intuition given in Example 7, and show that, assuming a passive attacker, thresholding
provides protection when all voters vote with a very small or a very large probability. First,
we formalize the notion of a thresholding mechanism in a simple context.

Definition 60 (Simple thresholding). Given a database D = (D(1), . . . , D(n)) with values
in {0, 1} and a threshold T , the T -thresholding mechanismMT evaluates k̃ =

∑
i D(i) and

returns ⊥ if k̃ ≤ T, and k otherwise.

Note thatMT only thresholds low counts. In many practical situations however, threshold-
ing must be applied in both directions: it must also catch the case where, with high probability,
almost all records are 1. This situation is symmetrical to thresholding low counts: without
loss of generality, we can assume T < n/2, and the symmetric version of all results in this
section hold.

Let us now show the main result of this section: if participants vote 1 with low probability,
then thresholding protects against passive attackers, and in some cases also against certain
active attackers. This privacy property only holds if the expected value of the count is lower
than the threshold; and the level of protection depends on the ratio between the threshold and
the expected value (denoted by r below).
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Theorem 4. Let θ be a distribution that returns n independent records, each of which is 1
with low probability: D(i) ∼ Ber(pi), and pi < p for all i; moreover, let Θ = {θ}. Suppose
that there is no partial knowledge, i.e., |B| = 0, and let us denote by f (s, n, p) the probability
that a random variable following a binomial distribution with parameters n and p has value
s: f (s, n, p) = ps(1 − p)n−s(n

s).

Then, if r = p(n−1)
(1−p)T < 1,MT is (Θ, ε, δ)-APKDP (and thus, (Θ, ε, δ)-PPKDP), with:

ε = − ln
(
1 −

f (T , n − 1, p)
1 − r

)
δ =

f (T , n − 1, p)
1 − r

For a large n, assuming pn is fixed, we can use the Poisson approximation and get δ ≈
(pn)T e−pn

(1−r)T ! . If this quantity is small enough, ε ≈ δ.
If the background knowledge B is not empty, assume that the attacker knows a subset |B| of

records. Let bmax be such that rb = p|B|
(1−p)bmax

< 1 and r′ = p(n−|B|−1)
(1−p)(T−bmax)

< 1. ThenMT is

(Θ, ε, δ)-PPKDP, with:

ε = − ln
(
1 −

f (T − bmax, n − |B| − 1, p)
1 − r′

)
δ =

f (bmax, |B|, p)
1 − rb

+
f (T − bmax, n − |B| − 1, p)

1 − r′
.

Proof. The proof is presented in three stages.

1. First, we consider the simpler case where all pi are equal and there is no background
knowledge. This allows us to compute the PLRV exactly, and we can then split the
output space into two parts. Most of its mass will be in the⊥ event, and we can compute
it there exactly. All other events will be captured by δ.

2. Second, we extending this to non-empty partial knowledge in a similar fashion: for
some bmax, with high probability, the background knowledge will not have more than
bmax records whose value is 1: the rest of the probability mass goes in the δ, and this
allows us to use the previous idea with a new threshold T ′ = T − bmax.

3. Finally, we use a coupling argument to extend this to the case where the pi are not all
the same.

First, let us compute the PLRV forMT depending on the output k and the value of the
background knowledge B̂, assuming a simple distribution θ where records are i.i.d. Denote
by b the number of records in B̂ which are 1 and by b = |B̂| − b the number of records that
are 0. The targeted record will be called D(t), and we assume it is never part of B̂. Let θ be
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a distribution that returns n i.i.d records according to D(i) ∼ Ber(p). Then we can directly
compute:

L
MT ,θ
i,0,1

(
k, B̂

)
= ln

P
[
M (D) = k

∣∣∣ D(t) = 0, B = B̂
]

P
[
M (D) = k

∣∣∣ D(t) = 1, B = B̂
]

=


ln

∑T−b
s=0 f (s,n−|B|−1,p)∑T−b−1

s=0 f (s,n−|B|−1,p)
if k = ⊥

ln p(n−b−k)
(1−p)(k−b) otherwise.

Note that if k = b, then LMT ,θ
i,0,1 (k, B) = ∞. The case where k < b is impossible regardless of

D(i): there cannot be more 1s in the background knowledge than the mechanism outputs. In
the case where there is no background knowledge, this becomes:

L
MT ,θ
i,0,1 (k) =


ln

∑T
s=0 f (s,n−1,p)∑T−1
s=0 f (s,n−1,p)

if k = ⊥

ln p(n−k)
(1−p)k otherwise.

This calculation allows us to bound ε and δ in the simpler case where there is no background
knowledge. To do so, we need a technical lemma to bound the probability mass of the tail of
the binomial distribution appearing above.

Lemma 1. For any n, p, and m such that m >
pn

1−p , we have:

n∑
s=m

f (s, n, p) <
f (m, n, p)

1 − pn
(1−p)m

Proof. Note that for all s ≥ m:

f (s + 1, n, p)
f (s, n, p)

=
p

1 − p

( n − s
s + 1

)
<

pn
(1 − p)m

.

Since m >
pn

1−p , this is strictly lower than 1, so the sum converges at least as fast as a geometric
series, which directly gives the desired result. �

We can now start proving the main theorem; first in the case where there is no background
knowledge and all pi are equal. There are two possibilities to consider, LMT ,θ

i,1,0 and LMT ,θ
i,0,1 .

First, we have:

Pθ [MT (D) , ⊥
∣∣∣ D(i) = 0] < Pθ [MT (D) , ⊥

∣∣∣ D(i) = 1]

= 1 −
T−1∑
s=0

f (s, n − 1, p)

=
n−1∑
s=T

f (s, n − 1, p)

<
f (T , n − 1, p)

1 − p(n−1)
(1−p)T
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since T >
p(n−1)

1−p , so we can use Lemma 1. Let us denote this quantity as δ. Now, we have

L
MT ,θ
i,1,0 (⊥) = ln

∑T−1
s=0 f (s, n − 1, p)∑T
s=0 f (s, n − 1, p)

< 0.

Furthermore:

L
MT ,θ
i,0,1 (⊥) = ln

∑T
s=0 f (s, n − 1, p)∑T−1
s=0 f (s, n − 1, p)

< ln

 1

1 −
∑n−1

s=T f (s, n − 1, p)


< − ln

1 − f (T , n − 1, p)

1 − p(n−1)
(1−p)T

 .

Thus, when the output is thresholded, the PLRV is smaller than ε = − ln
(
1 − f (T ,n−1,p)

1−r

)
,

and the event “the output is not thresholded” only happens with a probability smaller than δ,
which proves the initial statement in the simpler case.

Now, in the case where the background knowledge is non-empty, we must not only split
the output space, but also B as well. Denoting b the number of “1” entries in B, there are
three cases we must consider:

1. b ≥ bmax: if bmax is large enough, this happens with small probability, which we put in
the δ term;

2. b < bmax andMT (D) , ⊥: if T ′ = T − bmax is large enough, this happens with small
probability, which we put in the δ;

3. b < bmax andMT (D) = ⊥: this is the event in which most of the probability mass is
concentrated on, so we bound its privacy loss to obtain ε.

The probability of the first event can be bounded by:

Pθ [b ≥ bmax] =
|B|∑

s=bmax

f (s, |B|, p)

<
f (bmax, |B|, p)

1 − p|B|
(1−p)bmax

by Lemma 1. Similarly, the probability of the second event can be bounded by:

Pθ [MT (D) , ⊥
∣∣∣ b < bmax, D(i) = 1] <

n−|B|−1∑
s=T ′

f (s, n − |B| − 1, p)

<
f (T ′, n − |B| − 1, p)

1 − p(n−|B|−1)
(1−p)T ′
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so we can bound δ by the sum of those two terms. Now, let us compute the privacy loss for
the third case. Assuming b < bmax, we have:

L
MT ,θ
i,1,0 (⊥, B̂) = ln

∑T−b−1
s=0 f (s, n − |B| − 1, p)∑T−b

s=0 f (s, n − |B| − 1, p)
< 0

and:

L
MT ,θ
i,0,1 (⊥, B̂) = ln

∑T−b
s=0 f (s, n − |B| − 1, p)∑T−b−1

s=0 f (s, n − |B| − 1, p)

< ln

 1∑T ′−1
s=0 f (s, n − |B| − 1, p)


< − ln

(
1 −

f (T ′, n − |B| − 1, p)
1 − r′

)
Denoting this by ε, this proves the theorem in the special case where all pi are equal to a
constant p.

Now, we extend the first case (where the background knowledge is empty) to the case
where all pi are different, and pi < p for all p. Let us denote θp the distribution where all users
vote with the same probability p. Let g(s, n, p) = Pθ [MT (D) = s]. By a simple coupling
argument between θ and θp, we have for all t:

n∑
s=t+1

g(s, n, p) = Pθ [MT (D) > t]

≤ Pθp [MT (D) > t]

=
n∑

s=t+1

f (s, n, p).

We can then use this fact throughout the previous proof. The application of this bound for δ is
immediate, and for ε, we have:

L
MT ,θ
i,0,1 (⊥, B̂) = ln

∑T
s=0 g(s, n − 1, p)∑T−1
s=0 g(s, n − 1, p)

.

We can bound the numerator by 1 and the denominator expands to:

T−1∑
s=0

g(s, n − 1, p) = 1 −
n−1∑
s=T

g(s, n − 1, p)

≥ 1 −
n−1∑
s=T

f (s, n − 1, p)

=
T−1∑
s=0

f (s, n − 1, p)

so we can reuse the previous bound. The bounds translate to the case where the background
knowledge is not empty by a similar argument. �
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As shown in Figure 3.4, when the threshold is above the expected value, the values ε
and δ given by Theorem 4 are very close. Moreover, for large n, these values are extremely
small. This shows that thresholding counts constitutes a good practice, which can be used
to meaningfully improve user privacy without having to know about the data distribution in
advance, like in the usage statistics example at the beginning of this section.

A practitioner can apply the following reasoning: for each possible sequence of actions
captured by the system collecting app usage statistics, either many users are likely to have
a value of 1, in which case Theorem 3 applies and thresholding will likely not impact data
utility; or the vast majority of users will have a value of 0, in which case Theorem 4 applies
and thresholding will protect the rare users whose value is 1.

What if the attacker has non-zero partial knowledge, but is able to interact with the system?
We saw in Example 7 that if this partial knowledge is larger than the threshold, the mechanism
is not private. But if this partial knowledge is small enough, then privacy is still possible: it is
equivalent to reducing the threshold for an attacker with no partial knowledge.

Proposition 28. Let θ be the same distribution as in Theorem 4, with background knowledge
of size |B| ≤ T. Let θ′ be the equivalent distribution but with n′ = n − |B|, and no partial
knowledge. Then for any ε and δ,MT is (θ, ε, δ)-APKDP iffMT−|B| is (

{
θ′

}
, ε, δ)-PPKDP.

Proof. By writing down its explicit value, one can see that APKi,t,t′,B only depends on the
difference between T and the number of ones b in the background knowledge B. The same
applies for the variables n and |B|, which appear only in the form of n − |B|. This shows the
equivalence ofMT being ({θ}, ε, δ)-APKDP andMT−|B| being ({θ′}, ε, δ)-APKDP. Since
APKDP and PPKDP are the same when there is no background knowledge, the statement
follows. �

3.2.3 Application to k-anonymity

Sections 3.2.1 and 3.2.2 formalize two intuitive phenomena under partial knowledge. First, if
the attacker has a significant enough uncertain about enough people, counting queries do not
leak too much information about individuals. Second, for counting queries that apply to rare
enough behavior, thresholding provides meaningful protection against a passive attacker. This
suggests a link to an older anonymization notion: k-anonymity. In this section, we formalize
that link, and combine these two intuitions to provide a relation between k-anonymity and
differential privacy under partial knowledge.

k-anonymity, which we introduce in Section 2.1.1, requires each record in a database to
be indistinguishable from at least k − 1 other records. The intuition is that blending in a
large enough crowd provides protection; this intuition is close to the results of Section 3.2.1.
k-anonymity is generally obtained by generalizing the data to group similar records together,
then dropping the groups with less than k records. The link with the results of Section 3.2.2 is
obvious.

To formalize it, we need to clarify the notion of a k-anonymity mechanism. For simplicity,
we will simply assume that such a mechanism groups records by their value, and returns a
truncated histogram, where all values with less than k records have been removed.
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Figure 3.4: ε and δ from Theorem 4 as a function of the threshold T , where |B| = 0, p = 0.5%,
and three different values of n: n = 1000 (top), n = 10,000 (middle), and n = 100,000
(bottom).
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Definition 61 (k-anonymity mechanism). The k-anonymity mechanismMk takes a dataset in
D as input, and returns a histogram in (N∪⊥)T . For each t ∈ T ∪ {⊥},Mk(D) is defined
as:

• for all t ∈ T ,Mk(D)(t) =
∣∣∣{i | |D(i) = t

}∣∣∣ if this number is at least k (if there are less
than k records with value t in D);

• Mk(D)(t) = ⊥ otherwise.

If an input record is not in T , it is ignored byMk.

Note that we skipped the generalization step. The results below can be easily extended
to any fixed generalization strategy, i.e. a fixed mapping between T and an arbitrary space
forming the support of the histogram. It is important that this strategy is fixed. If this function
depends on the data, arbitrary correlations can be embedded in the output, which might leak
additional information; minimality attacks [389] provide an example of this phenomenon.

Now, under which condition is such a mechanism private? The distribution that captures
the attacker’s uncertainty must be such that for all possible values t ∈ T , either this value is
rare enough to be thresholded with high probability, either there is sufficient randomness in
the input data that releasing the exact value does not leak too much information.

In addition, we assume that it is possible for a given record to have the value⊥, representing
their absence in the dataset. The count corresponding to ⊥ are never released. We discuss
later the importance of such a special value, and its practical interpretation.

Theorem 5. Let θ be a distribution that generates n independent records in T ∪ {⊥}. Assume
that there is a λ such that for all t ∈ T :

• either for all indices i, P [D(i) = t] ≤ λ,

• or for all indices i, λ ≤ P [D(i) = t] ≤ 1 − λ;

furthermore, assume that for all indices i, λ ≤ P [D(i) = ⊥] ≤ 1 − λ, and that the attacker
does not have any background knowledge.

Let T be a threshold such that r =
λ(n−1)
(1−λ)k < 1. Then MT is ({θ}, ε, δ)-APKDP for all

δ ≥ δ0, where:

δ0 =
2 · f (T , n − 1, λ)

1 − r

ε = 2 ·max
(
− ln

(
1 −

f (T , n − 1, λ)
1 − r

)
, εc

)
and εc is such that δ ≥ P

[
X
Y ≥ εc

]
, where X and Y are two independent random variables

sampled from a binomial distribution with n − 1 trials and success probability 2λ.

Proof. For a given index i and a possible record t ∈ T , we compare the events D(i) = t
and D(i) = ⊥. If we find ε and δ such that M (D)|D(i)=t ≈ε,δ M (D)|D(i)=⊥, then we
haveM (D)|D(i)=t ≈2ε,2ε M (D)|D(i)=t for all t, t′ ∈ T , which would conclude the proof
immediately.
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There are two options that we must consider: either for all indices i, P [D(i) = t] ≤ λ,
either for all indices i, λ ≤ P [D(i) = t] ≤ 1 − λ.

In the first case, we can reuse the analysis of Section 3.2.2: with probability 1 − δ0, where
δ0 =

f (T ,n−1,λ)
1−r , the result is thresholded, and the corresponding privacy loss is bounded

by ε0 = − ln
(
1 − f (T ,n−1,λ)

1−r

)
, following the same reasoning than in the proof of Theorem 4.

Importantly, in this case, comparing D(i) = t and D(i) = ⊥ allows us to restrict our analysis
to the value ofMT (D)(t): the distributions of values ofMT (D)(t′) for all t′ , t are the
same when θ is conditioned on D(i) = t or D(i) = ⊥.

In the second case, we reuse the analysis of Section 3.2.1: the distribution ofMT (D)(t) can
be seen as the sum of records, each of whom has been randomized using a binary randomized
response with parameter 2λ. SinceMT (D)(⊥) also follows this binary randomized response
process, we can directly apply the proof of Theorem 3 with δ0.

Combining both cases directly leads to the desired result, using the indistinguishability
property betweenMT (D)(t) andMT (D)(⊥) to get one between arbitrary t and t′. �

Theorem 5 is relatively complex, and depends on a number of conditions. Let us discuss its
limitations. Some of them are necessary for the result to be true, others could be overcome
with a more careful analysis, at the cost of simplicity.

First, we assume that the attacker has no partial knowledge over the data. The result can
easily be extended to the case where the attacker has non-zero passive partial knowledge of m
records over the data: for the counting case, we can simply remove these m records and obtain
the results with n −m instead of m, and for the thresholding case, we can apply Theorem 4
directly. The discussion in Theorem 4 shows that cannot be easily extended to the case where
the attacker has the ability to influence the data, unless a very small number of records can
be influenced (as in Proposition 28). This captures the correct intuition that k-anonymity is
vulnerable against active attackers.

Second, the choice distribution θ might seem artificial, carefully chosen so the previous
results can be applied. Why would there be a value λ such that all records have a probability
lower than λ of being in a fixed category, or larger than λ? The first option is reasonable:
many real-life distributions are long-tailed; some types of actions, or characteristics, are
simply very rare. The second option is less natural: maybe a characteristic that is common
for many people is extremely rare in others, so requiring all records to have a high enough
probability for this record seems too restrictive. However, note that this high probability
captures the attacker’s uncertainty: if the attacker knows that some records have a particularly
low probability of having a certain record, it is possible to over-approximate this knowledge,
and simply consider these records as known by the attacker. We can then use the previous
point to still get an upper bound on the attacker’s information gain.

Third, what is the meaning of the ⊥ special case, and is it necessary for the proof of
Theorem 5 to work? We use it to prove the desired indistinguishability property in the second
case of the proof. Without it, it turns out that subtle problems can arise. Suppose, for example,
that T = {a, b, c}, and that for all i, P [D(i) = a] is infinitesimally small, while P [D(i) = b]
and P [D(i) = c] are both close to 0.5. If the total number of records is fixed (and implicitly
assumed to be known by the attacker), note that thresholding the count for a is pointless: with
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high probability, we can retrieve it by computing the difference between n and the counts
for b and c. This phenomenon is a real vulnerability of k-anonymity when the total number
of participants is known: any result showing that k-anonymity protects privacy under partial
knowledge must find a way of guaranteeing that this does not happen.

Creating an artificial category ⊥ whose count is never released solves this problem, assum-
ing that this category has sufficient uncertainty. This hides the total number of participants
and mitigate this vulnerability. Another way would be to impose that the distribution θ has
multiple t ∈ T whose counts will likely be thresholded, and that these t together have enough
uncertainty to hide the total count. This is also realistic in practice, given that most distribu-
tions are long-tailed, but would likely require a more complex analysis, as well as complicate
the theorem statement.

Note that a link between k-anonymity and differential privacy was already introduced
in [255]. We use the same notion of a k-anonymity mechanism, however, we model the
attacker’s partial knowledge differently. In [255], the attacker is assumed to know the value
of every single record from the original dataset, but not which records have been randomly
sampled from it. Arguably, the only way to satisfy that assumption in practice is to have the
mechanism actually sample the data before applying k-anonymity. In that case, the original
differential privacy definition is satisfied. By contrast, our setting assumes an attacker that
has some uncertainty about the value of the records themselves; we argue that this is a much
more natural way of capturing the natural assumption that the attacker has partial knowledge
over the data.

How strong are the privacy parameters provided by Theorem 5 for realistic use cases? First,
note that as shown by Figure 3.4, whenever the δ parameter from the thresholding operation
is reasonably low, then we have ε ≈ δ, which is much lower than the ε values from the results
on the privacy of noiseless aggregations (Section 3.2.1). Thus, to use Theorem 5 in practice,
one would supposedly need to:

1. first, fix a target ε and δ that we want to obtain;

2. these privacy parameters give a range of acceptable values of λ, according to Theorem 3;
we then select one such value that will serve as a boundary between “rare events” and
“common events”;

3. finally, calculate the threshold T based on λ and δ, according to Theorem 4.

Admittedly, the above process is not trivial to actually apply, and the constraints on λ make
our second point above even more salient: not only is this choice brittle. All in all, our result
is an interesting link between two important notions, and formalizes a natural intuition about
the inherent privacy of simple aggregation and thresholding mechanisms, but is probably not
suited for practical applications. Can it be significantly improved or extended, without adding
more brittle assumptions? We leave this as an open question.

3.2.4 Composition

Composition theorems enable the modular analysis of complex systems and the continued
usage of mechanisms over time. In this section, we study two kinds of composition. Sequential
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composition, introduced in Section 2.1.6.3, and nested composition, where post-processing
noise is added to the result of the aggregation.

3.2.4.1 Sequential composition

We saw in the previous section that noiseless mechanisms could be private under partial
knowledge. For such mechanisms, composition does not hold in general. We explain why
dependencies between mechanisms are the root cause of composition failing, and we explain
how bounding this dependencies allow us to derive usable composition results. First, we show
that noiseless composition fails in general.

Example 8. Going back to the voting example, consider the queries “How many people
voted Yes?” and “How many people who are not X voted Yes?”, for some individual X.
As shown in Section 3.2.1, each query can be private on its own. However, publishing both
results reveals X’s vote: the composition of both queries is not private.

Are there special cases where noiseless counting queries can be composed? In this section,
we propose a criterion, (µ, ν)-boundedness, under which sequential composition does hold.

The core problem with Example 8 is that the two queries are heavily dependent on each
other. In fact, knowing the result to the first query only leaves two options for the result of the
second query: it drastically reduces an attacker’s uncertainty about the second query’s result.
We show that this dependency between queries is the main obstacle towards a composition
result and prove that mechanisms where the dependency is bounded (Definition 63) can
actually be composed (Theorem 6).

How can we formalize the bounded dependency between mechanisms? A natural approach
is to quantify how much the additional knowledge of the first mechanism impacts the privacy
loss of the second mechanism.

Definition 62. Given two mechanismsM1 andM2, two t, t′ ∈ T , two outputs O1, O2, a
distribution θ, an index i, a possible value of the background knowledge B̂ compatible with
D(i) = t and D(i) = t′, the dependency ofM2 onM1 to distinguish D(i) = t and D(i) = t′

is the function O2 → R∪ {−∞,∞} defined by:

DepM1,M2,θ
i,t,t′

(
O1, O2

∣∣∣B̂)
= LM2,θ

i,t,t′
(
O2,

(
B̂,M1(D) = O1

))
−L

M2,θ
i,t,t′

(
O2, B̂

)
using the convention ±∞− x = ±∞ for all x.

Intuitively, this value quantifies the amount of additional information thatM1 gives the
attacker when analyzing the privacy loss of M2. In Example 8, the first term is ±∞, as
knowing both the results ofM1 andM2 leaks the value of D(i), while the second term is
typically finite. So DepM1,M2,θ

i,t,t′
(
O1, O2

∣∣∣B̂)
takes infinite values, which captures the fact that

the two mechanisms together leak a lot of information.
Bounding this dependency can be done in the same way as using the PLRV to define

differential privacy: we bound Dep by µ almost everywhere, and use a small quantity ν to
capture rare events where Dep > µ.
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Definition 63 ((µ, ν)-bounded dependency). Given a family of distributions Θ, two mech-
anismM1 andM2 are (µ, ν)-bounded dependent for Θ if for all θ ∈ Θ, all indices i and
records t, t′ ∈ T , and all B̂ ∈ B:

E

θ|D(i)=t,B̂,

O1 ∼ M1(D),

O2 ∼ M2(D)

[
max

(
0, 1 − eµ−DepM1,M2,θ

i,t,t′ (O1,O2|B̂)
)]

is smaller or equal to ν.

This notion formalizes the intuition that the result of the first mechanism should not impact
“too much” the result of the second mechanism. As we show in the following theorem, the
dependency ofM2 onM1 can be used to express the PLRV of the composed mechanism as
a function of the PLRV of the two original mechanisms. As a direct consequence, we show
that two (µ, ν)-bounded dependent mechanisms can be sequentially composed.

Theorem 6. Given a distribution θ, two mechanismsM1,M2, an indice i, records t, t′ ∈ T ,
and B̂ ∈ B, the PLRV of the composed mechanismM(D) := (M1(D),M2(D)) satisfies:

L
M,θ
i←t/i←t′

(
O, B̂

)
= 2 ·DepM1,M2,θ

i,t,t′
(
O1, O2

∣∣∣B̂)
+LM1,θ

i,t,t′
(
O1, B̂

)
+LM2,θ

i,t,t′
(
O2, B̂

)
.

As a corollary, ifM1,M2 are (µ, ν)-bounded dependent, ifM1 is (Θ, ε1, δ1)-APK, and if
M2 is (Θ, ε2, δ2)-APK for Θ, thenM is (Θ, 2µ+ ε1 + ε2, δ1 + δ2 + ν)-APK.

Proof. Fix i, t, t′, O and B̂. The main statement is straightforward to prove by decomposing:

L
M,θ
i←t/i←t′ (O, B̂) = ln

Pθ

[
M(D) = (O1, O2)

∣∣∣ D(i) = t, B̂
]

Pθ

[
M(D) = (O1, O2)

∣∣∣ D(i) = t′, B̂
]

= ln
Pθ

[
M2(D) = O2

∣∣∣M1(D) = O1, D(i) = t, B̂
]

Pθ

[
M2(D) = O2

∣∣∣M1(D) = O1, D(i) = t′, B̂
]

+ ln
Pθ

[
M1(D) = O1

∣∣∣ D(i) = t, B̂
]

Pθ

[
M1(D) = O1

∣∣∣ D(i) = t′, B̂
]

and plugging in the definition of DepM1,M2,θ
i,t,t′

(
O1, O2

∣∣∣B̂)
.

To prove the composition theorem, we have to show that, if we denote ε = ε1 + ε2 + µ

and δ = δ1 + δ2 + ν:

E
θ|D(i)=t,B̂,O∼M(D)

[
max

(
0, 1 − eε−L

M,θ
i←t/i←t′ (O,B̂)

)]
≤ δ.

Note that the function f (x) = max (0, 1 − ex) is subadditive: for all x and y, f (x + y) ≤
f (x) + f (y). Indeed, if x > 0, then f (x) = 0, and it is straightforward to verify that
1 − ex+y ≤ 1 − ey. The same reasoning holds when y > 0. Finally, if x ≤ 0 and y ≤ 0, then we
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must show that 1 − ex+y ≤ 2 − ex − ey, which is equivalent to (ex − 1) (ey − 1) ≥ 0, which
trivially holds.

We then define:

a = ε1 −L
M1,θ
i,t,t′

(
O1, B̂

)
b = ε2 −L

M2,θ
i,t,t′

(
O2, B̂

)
c = µ −DepM1,M2,θ

i,t,t′
(
O1, O2

∣∣∣B̂)
and we use this subadditivity property: f (a + b + c) ≤ f (a) + f (b) + f (c). As we have
a + b + c = ε −LM,θ

i,t,t′
(
O, B̂

)
, we can directly plug this into the expression above and use the

assumptions of the theorem to show that it is bounded by δ1 + δ2 + ν = δ. �

Note that the characterization of LM,θ
i←t/i←t′

(
O, B̂

)
enables the use of more sophisticated

composition bounds for differential privacy, such as the advanced composition theorem [131],
Rényi Differential Privacy [284], or privacy buckets [278]. For simplicity, here, we only used
the standard (non-tight) composition bound for DP.

A common special case directly leads to (0, 0)-bounded dependent mechanisms: two
mechanisms that work on distinct parts of a database are (0, 0)-bounded dependent if these
two parts are independent.

Proposition 29. Let Θ be a family of distributions, and let M1 and M2 be mechanisms.
Assume that for any θ ∈ Θ, there are functions π1 and π2 such that π1(D)|D∼θ and π2(D)|D∼θ
are independent, and functionsM′1 andM′2 such thatM1(D) =M′1 (π1(D)) andM2(D) =
M′2 (π2(D)). ThenM1 andM2 are (0, 0)-bounded dependent.

We now present an natural example of a practical scenario where we can use these compo-
sition results.

Example 9. Consider a regularly updated database, like usage information about an online
service. Statistics q are computed from this database: for example, among registered users,
how many of them used a specific feature on any given day. This count is released daily, and
we want to understand how the privacy of a particular user is impacted over time.

This can be represented by a database D where each record i is a series of binary val-
ues (D(i)) j, where j = 0, 1, 2, · · · , and we release a series of mechanisms M j(D) =∑

i q(D(i) j). The results of Section 3.2.1 can be used to determine the privacy of eachM j
depending on the data-generating distribution θ. The goal is to determine the privacy of
multiple queries, assuming independence between D (i1) and D (i2) for all i1 , i2.

The analysis of the privacy guarantees offered by this setting over time depends on θ, and
on the correlations between the different values of a record. If D(i) j1 is independent from
D(i) j2 for all j1 , j2, then the result is direct. Otherwise, we must quantify the maximum
amount of correlation between D(i) j and D(i) j+1. Quantifying this can be done using
indistinguishability: we can assume, for example, that there is a c ≥ 0 such that for all a ∈ T
and all indices i and j: (

D(i) j+1

)
|D(i) j=t

≈c D(i) j.
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Under this assumption, it is easy to verify that mechanisms M j and M j+1 are (2c, 0)-
bounded dependent, so we can use the composition result of Theorem 6 and derive bounds on
the privacy leakage over time.

This approach can be extended to other scenarios, for example if only a subset of users
participate to each update, or if a referendum contains multiple questions, whose answers are
correlated. Another possible scenario is if only a subset of users participate to each update.
We can represent this by having D(i) j be either a categorical value (which encodes e.g. the
type of interaction) or a special value ⊥ that encodes “user i did not participate to this update”.
The probabilities and correlation relationships of different values associated with the same
user can be set to capture different scenarios (e.g. the probability that D(i) j = ⊥ can be large,
to capture a scenario where few users participate every round).

3.2.4.2 Nested composition

The results of Sections 3.2.1 to 3.2.3 show that noiseless mechanisms can be considered
private, assuming some additional assumptions on the attacker’s background knowledge. With
enough records, even pessimistic assumptions (considering an attacker who knows a large
fraction of records) can lead to very small values of ε and δ. However, one could still consider
these assumptions as too brittle, and decide to add a small amount of additional noise to the
mechanism to have it satisfy differential privacy in its original form.

Such mechanisms have a double privacy guarantee: under realistic assumptions, their
privacy level is very high thanks to the attacker’s uncertainty, and the additional noise
provides a “worst-case” privacy level that the mechanism satisfies independently of the
attacker capabilities. Without noise, we can use results like Theorem 3 to show that a given
aggregation over n records is (Θ(|B|), ε(|B|), δ(|B|))-APKDP (or PPKDP), where |B| is the
number of records that the attacker knows. In situations like ones we have seen so far, ε(|B|)
and δ(|B|) can be very small when |B| is close to 0, but might become unacceptably high when
|B| gets close to n. Adding noise can be a way to guarantee that ε(|B|) and δ(|B|) never get
above a certain point: when there is not enough randomness coming from the data anymore,
the guarantee from post-processing noise take over. Figure 3.5 illustrates this phenomenon.

Of course, it is also natural to wonder whether the two sources of uncertainty could be
combined. The privacy guarantees from Theorem 3 come from the shape of the binomial
distribution, just like the shape of Laplace noise is the reason why adding it to the result of an
aggregation can provide ε-DP. It seems intuitive that combining two sources of noise would
have a larger effect.

In some cases, this effect can be numerically estimated. Given a noise distribution X added
to a mechanism of sensitivity s, the PLRV can be obtained by comparing the distributions
of X and X + s. To estimate the PLRV coming from two noise sources summed together
(for example, binomial and geometric noise), we can simply compute the convolution of the
corresponding two distributions, and use the result to compute the PLRV, and thus, the (ε, δ)
graph. We demonstrate this approach in Figure 3.6, where we add two-sided geometric noise
(see Definition 8) to a noiseless counting query.

It is natural to ask whether we could obtain generic results that quantify the combined
effect of noise coming from the input data and noise added after the aggregation mechanism,
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Figure 3.5: ε from the closed-form formula of Theorem 3 for δ = 10−10, λ = 0.05, and n = 100,000,
as a function of the number of records known by the attacker |B|. We compare two
scenarios: either we do not add any post-processing noise, or we add Laplace noise of
scale 2 to the output.
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Figure 3.6: Numerical computation of the (ε, δ) bounds given by Theorem 3 with n = 10,000 and
λ = 0.05 (in dashed blue), compared with the bounds obtained by adding two-sided
geometric noise of parameter p = 0.5 or p = 0.75 (see Definition 8) and combining both
probability distributions.
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without numerical evaluation. In [176], the authors propose such a result, based on the fact
that Gaussian distributions are closed under convolution. The noise from the input data is
approximated by a Gaussian using the central limit theorem, and their Theorem 6 shows that
adding Gaussian noise leads to a smaller ε. However, since the δ term comes from the central
limit theorem approximation, it cannot be improved beyond δ = O(1/

√
n) in general.

We could solve this by simply making the assumption that the input data unknown from
the attacker actually follows a Gaussian distribution. Sadly, the corresponding result would
be very brittle: if an attacker does not conform exactly to this approximation, then the
result no longer holds. This is a major criticism of privacy definitions which assume the
input data has inherent randomness [350]. The results of this paper are not so brittle, as the
privacy guarantees degrade gracefully with the assumptions we make on the attacker’s partial
knowledge (e.g. the number of records known, or the value of p in Theorems 3 or 4).

Another approach would be choose the noise added as post-processing based on the natural
noise distributions emerging from the partial knowledge assumption. For example, since the
proof of Theorem 3 uses the fact that the attacker uncertainty corresponds to binomial noise,
we could also add binomial noise as post-processing, since B(n, p) + B(m, p) = B(n+m, p).
However, this property depends on the exact value of p, which again creates a brittleness we
were trying to avoid.

The question of computing the privacy loss in situations where multiple sources of random-
ness are combined appears in other scenarios. Amplification by sampling or amplification by
shuffling are examples of such results. These two classes of results are generic: they do not
depend on the exact mechanism used to obtain the initial (ε, δ)-DP guarantee. It is unlikely
that such generic results exist when combining two arbitrary sources of noise, each of which
satisfies (ε, δ)-DP.

Some other results depend on additional assumptions on the noise distribution, like amplifi-
cation by iteration [149] or amplification by mixing and diffusion mechanisms [25]. These do
not seem to bring significant improvements in scenarios like Theorem 3 with post-processing
noise: amplification by iteration is tailored for a case where noise is added many times (not
only once), while amplification by mixing and diffusion require stronger assumptions on the
original noise distribution.

An generic result on the privacy guarantee of chained ε-DP mechanisms appears in [139]
(Appendix B). This tight result is only valid for pure ε-DP, but the main building block holds
for (ε, δ)-DP mechanisms: proving a fully generic chained composition result is equivalent
to solving the special case where the input and output of both mechanisms have values in
{0, 1}. This result can likely be extended to the (ε, δ)-DP, although the analysis is surprisingly
non-trivial, and fully generic optimality results do not necessarily mean optimality for the
special case of additive noise mechanisms.

3.3 limits: cardinality estimation

So far, we showed that considering an uncertain attacker could lead to positive results about
the privacy of noiseless aggregations. In this section, we show that this setting can also be used
to derive negative results: some problems simply cannot be solved in a privacy-preserving
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way, even under the assumption that the attacker has complete uncertainty over the original
data.

The problem we now focus on is cardinality estimation. Cardinality estimators, like
HyperLogLog, are algorithms that produce a type of output named sketches. Sketches can
estimate the number of distinct records in a large multiset, and can also be merged, ignoring
duplicates across sketches. Their widespread use in privacy-sensitive contexts leads to a
natural question: can they be made anonymous according to some reasonable privacy notion?

In this section, we show that the answer to this question is negative. We formulate an
abstract notion of cardinality estimators, that captures their aggregation requirement: one
can merge sketches without losing precision. We show that for all cardinality estimators that
satisfy our aggregation requirement, sketches are almost as sensitive as raw data. Indeed, even
in a setting where the attacker is assumed to have zero background knowledge about the input
data, they can still gain significant knowledge about their target by looking at the output of
the algorithm.

Our results are a natural consequence of the aggregation properties: to aggregate sketches
without counting the same user twice, they must contain information about which users
were previously added. The attacker can use this information, even if they do not know
any other users in the sketch. Furthermore, adding noise either violates the aggregation
property, or has no influence on the success of the attack. Thus, it is pointless to try and design
privacy-preserving cardinality estimators: privacy and accurate aggregation are fundamentally
incompatible.

This section is organized as follows.

1. In Section 3.3.1, we motivate our work with an example of how cardinality estimators
can be used in practice. We formally define an abstract notion of cardinality estimators,
and give a weak definition of privacy that is well-suited to how they are used in practice.

2. In Section 3.3.2, we prove that cardinality estimators cannot satisfy this privacy property
while maintaining good accuracy asymptotically.

3. In Section 3.3.3, we consider even weaker versions of our initial definition. We show
that our results still hold for some variants, while others notions are compatible with
accurate cardinality estimation. We then highlight the consequences of our results on
practical applications.

4. In Section 3.3.4, we propose and discuss various risk mitigation techniques to use
cardinality estimators in practice.

3.3.1 Preliminaries

Many data analysis applications must count the number of distinct records in a large stream
with repetitions. These applications include network monitoring [142], online analytical
processing [309, 346], query processing, and database management [387]. A variety of
algorithms, which we call cardinality estimators, have been developed to do this efficiently,
with a small memory footprint. These algorithms include PCSA [154], LogLog [120], and
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HyperLogLog [152]. They can all be parallelized and implemented using frameworks like
MapReduce [95]. Indeed, their internal memory state, called a sketch, can be saved, and
sketches from different data shards can be aggregated without information loss.

Using cardinality estimators, data owners can compute and store sketches over fine-grained
data ranges, for example, daily. Data analysts or tools can then merge (or aggregate) existing
sketches, which enables the subsequent estimation of the total number of distinct records
over arbitrary time ranges. This can be done without re-computing the entire sketch, or even
accessing the original data.

Among cardinality estimators, HyperLogLog [152] and its variant HyperLogLog++ [195]
are widely used in practical data processing and analysis tasks. Implementations exist for many
widely used frameworks, including Apache Spark [18], Google BigQuery [48], Microsoft
SQL Server [203], and PostgreSQL [318]. The data these programs process is often sensitive.
For example, they might estimate the number of distinct IP addresses that connect to a
server [369], the number of distinct users that perform a particular action [21], or the number
of distinct devices that appeared in a physical location [286]. To illustrate this point, we
present an example of a location-based service, which we will use throughout this section.

Example 10. A location-based service gathers data about the places visited by the service’s
users. For each place and day, the service stores a sketch counting the identifiers of the users
who visited the place that day. This allows the service’s owners to compute useful statistics.
For example, a data analyst can merge the sketches corresponding to the restaurants in a
neighborhood over a month, and estimate how many distinct individuals visited a given
restaurant during that month. The cost of such an analysis is proportional to the number of
aggregated sketches. If the queries used raw data instead, then each query would require a
pass over the entire dataset, which would be much more costly.

Note that the type of analysis to be carried out by the data analyst may not be known in
advance. The data analysts should be able to aggregate arbitrarily many sketches, across
arbitrary dimensions such as time or space. The relative precision of cardinality estimation
should not degrade as sketches are aggregated.

Fine-grained location data is inherently sensitive: it is extremely reidentifiable [171], and
knowing an individual’s location can reveal private information. For example, it can reveal
medical conditions (from visits to specialized clinics), financial information (from frequent
visits to short-term loan shops), relationships (from regular co-presence), sexual orientation
(from visits to LGBT community spaces), etc. Thus, knowing where a person has been reveals
sensitive information about them.

As the above example suggests, an organization storing and processing location data
should implement risk mitigation techniques, such as encryption, access controls, and access
audits. The question arises: how should the sketches be protected? Could they be considered
sufficiently aggregated to warrant weaker security requirements than the raw data?

To answer this question, we model a setting where a data owner stores sketches for
cardinality estimation in a database. The attacker can access some of the stored sketches and
any user statistics published, but not the raw data itself. This attacker model captures the
insider risk associated with personal data collections where insiders of the service provider
could gain direct access to the sketch database. In this paper, we use this insider risk scenario
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as the default attacker model when we refer to the attacker. In the discussion, we also consider
a weaker attacker model, modeling an external attacker that accesses sketches via an analytics
service provided by the data owner. In both cases, we assume that the attacker knows the
cardinality estimator’s internals.

The attacker’s goal is to infer whether some user is in the raw data used to compute one
of the accessible sketches. That is, they pick a target user, They choose a sketch built from
a stream of users, and must guess whether their target is in this stream. The attacker has
some prior knowledge of whether their target is in the stream, and examining the sketch gives
them a posterior knowledge. The increase from prior to posterior knowledge determines their
knowledge gain.

Consider Example 10. The attacker could be an employee trying to determine whether
their partner visited a certain restaurant on a given day, or saw a medical practitioner. The
attacker might initially have some suspicion about this (the prior knowledge), and looking
at the sketches might increase this suspicion. A small, bounded difference of this suspicion
might be deemed to be acceptable, but we do not want the attacker to be able to increase their
knowledge too much.

Thus, our goal is to understand whether a realistic attacker could gain significant knowledge
about a target by looking at a HyperLogLog sketch; or any other output from a different
cardinality estimator.

3.3.1.1 Related work

Prior work on privacy-preserving cardinality estimators has been primarily focused on dis-
tributed user counting, for example to compute user statistics for anonymity networks like Tor.
Each party is usually assumed to hold a set Xi of data, or a sketch built from Xi, and the goal is
to compute the cardinality of

⋃
i Xi, without allowing the party i to get too much information

on the sets X j with j , i. The attacker model presumes honest-but-curious adversaries.
In [369], the authors propose a noise-adding mechanism for use in such a distributed context.

In [279], each party encrypts their sketch, and sends it encrypted to a tally process, which
aggregates them using homomorphic encryption. In [21], the authors propose a multiparty
computation protocol based on Bloom filters to estimate cardinality without the need for
homomorphic encryption, and in [136], this approach is shown to be vulnerable to attacks,
and a more secure variant of the protocol is presented.

Some cardinality estimation protocols who achieve differential privacy have been proposed,
based either on Bloom filters [9], FM-sketches [374]. However, these sketches cannot be
aggregated without significant accuracy loss, or using secure aggregation methods in a
multiparty setting; this last option is explored in [77] using LogLog sketches. Another line of
research focuses on counting distinct elements in a scalable way, and making only the output
differentially private, not the sketches itself [72].

Our attacker model, based on insider risk, is fundamentally different to these models: the
same party is assumed to have access to a large number of sketches; they must be able to
aggregate them and get good estimates. We claim that cardinality estimators must necessarily
make a hard choice: the sketches can be made private, or they can be aggregated without
catastrophic accuracy degradation, but both properties are mutually exclusive.
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Our privacy definition for cardinality estimators is a variant of differential privacy, presented
in Definition 6 (Section 2.1.6). It uses a data-generating probability distribution to capture
the attacker’s uncertainty, in a similar way of variants introduced in Section 2.2.5. We
explain in Section 3.3.1.4 why we need a custom privacy definition for our setup and how it
relates to differential privacy and Pufferfish privacy (Definition 35, in Section 2.2.5.3). Some
deterministic algorithms, which do not add noise, have been shown to preserve privacy under
this assumption [36, 46, 176].

Our setting has some superficial similarities to the local differential privacy model, where
the data aggregator is assumed to be the attacker. This model is often used to develop
privacy-preserving systems to gather statistics [38, 40, 141, 146]. However, the setting and
constraints of our work differ fundamentally from these protocols. In local differential privacy,
each individual sends data to the server only once, and there is no need for deduplication
or intermediate data storage. In our work, the need for intermediate sketches and unique
counting leads to the impossibility result.

Finally, some work has been done on the security properties of HyperLogLog sketches,
in particular their resistance to adversarial manipulation [330], this direction of research is
largely orthogonal to the one studied in this work.

3.3.1.2 Cardinality estimators

In this section, we formally define cardinality estimators, and prove some of their basic
properties. The notations introduced below, and used throughout this section, are summarized
on page xix.

Cardinality estimators estimate the number of distinct records in a stream. The internal
state of a cardinality estimator is called a sketch. Given a sketch, one can estimate the number
of distinct records that have been added to it (the cardinality).

Cardinality estimator sketches can also be aggregated: two sketches can be merged to
produce another sketch, from which we can estimate the total number of distinct records in
the given sketches. This aggregation property makes sketch computation and aggregation
embarrassingly parallel. The order and the number of aggregation steps do not change the
final result, so cardinality estimation can be parallelized using frameworks like MapReduce.

We now formalize the concept of a cardinality estimator. The records of the multiset are
assumed to belong to a large but finite set T .

Definition 64. A deterministic cardinality estimator is a tuple 〈S∅, add, estimate〉, where:

• S∅ is the empty sketch;

• add (S , t) is the deterministic operation that adds the record t to the sketch S and
returns an updated sketch;

• estimate (S ) estimates the number of distinct records that have been added to the
sketch.

Furthermore, the add operation must satisfy the following axioms for all sketches S and
records t, t1, t2 ∈ T .
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1. Idempotence: add (add (S , t) , t) = add (S , t).

2. Commutativity: add (add (S , t1) , t2) = add (add (S , t2) , t1).

These axioms state that add ignores duplicates and that the order in which records are
added is immaterial. Ignoring duplicates is a natural requirement for cardinality estimators.
Ignoring order is required for this operation to be used in frameworks like MapReduce, or
open-source equivalents like Hadoop or Apache Beam. Since handling large-scale datasets
typically requires using such frameworks, we consider commutativity to be a hard requirement
for cardinality estimators.

We denote by S t1,...,tn the sketch obtained by adding t1, . . . , tn successively to S∅, and we
denote by S the set of all sketches that can be obtained inductively from S∅ by adding records
from any subset of T in any order. Note that S is finite and of cardinality at most 2|T |. Order
and multiplicity do not influence sketches: we denote by S E the sketch obtained by adding all
records of a set E (in any order) to S∅.

Later, we give several examples of deterministic cardinality estimators, all of which satisfy
Definition 64.

Lemma 2. add (S t1,...,tn , ti) = S t1,...,tn for all i ≤ n.

Proof. This follows directly from the idempotence and commutativity properties. �

In practice, cardinality estimators also have a merge operation. We do not explicitly require
the existence of this operation, since add’s idempotence and commutativity ensure its existence
as follows.

Definition 65. To merge two sketches S and S ′, choose some E = {t1, . . . , tn} ⊆ T such that
S ′ = S E . We define merge (S , S ′) to be the sketch obtained after adding all records of E
successively to S .

Note that this construction is not computationally tractable in general, even though in
practical scenarios, the merge operation must be fast. This efficiency requirement is not
necessary for any of our results, so we do not explicitly require it either.

Lemma 3. The merge operation in Definition 65 is well-defined, i.e., it does not depend on
the choice of E. Furthermore, the merge operation is a commutative, idempotent monoid on
S with S∅ as neutral record.

Proof. Let S and S ′ be two sketches. If E = {t1, . . . , tk}, we denote by add (S , E) the result
of adding records of E successively to S :

add (S , E) = add (. . . add (add (S , t1) , t2) . . . , tk) .

Let t1 and t2 be two sets such that S t1 = S t2 = S ′, and let E be a set such as S E = S .
Then add (S , t1) = add (add (S∅, E) , t1). Using the two properties of the add function,
we get add (S , t1) = add (add (S∅, t1) , E) = add (S ′, E). The same reasoning leads to
add (S , t2) = add (S , t1): the merge function does not depend on the choice of E.

In addition, note that merge (S , S ′) = add (S∅, E ∪ t1). Thus, commutativity, associativity,
idempotence, and neutrality follow directly from the same properties of set union. �
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Note that these properties of the merge operation are important for cardinality estimators:
when aggregating different sketches, we must ensure that the result is the same no matter in
which order the sketches are aggregated.

Existing cardinality estimators also satisfy efficiency requirements: they have a low memory
footprint, and add and merge run in constant time. These additional properties are not needed
for our results, so we omit them in our definition.

We now define precise cardinality estimators.

Definition 66. Let E be a set of cardinality n taken uniformly at random in T . The quality of
a cardinality estimation algorithm is given by two metrics:

1. Its bias E [n − estimate (S E)]

2. Its variance Vn = E
[
(E [estimate (S E)] − estimate (S E))

2].
Typically, cardinality estimators used for practical applications are asymptotically un-

biased: E[n−estimate(S E)]
n = o(1). In the rest of this work, we assume that all cardinality

estimators we consider are perfectly unbiased, so Vn = E
[
(n − estimate (S E))

2]. Cardi-
nality estimators are often compared by their relative standard error (RSE), which is given
by: √√

E

(n − estimate (S E)

n

)2 = √
Vn

n
.

A cardinality estimator is said to be precise if it is asymptotically unbiased and its relative
standard error is bounded by a constant. In practice, we want the relative standard error to
be less than a reasonably small constant, for example less than 10%.

Let us give a few examples of cardinality estimators, with their memory usage in bits
(m = ln2 |S|) and their relative standard error. As a first step, they all apply a hash function
to the user identifiers. Conceptually, this step assigns to all users probabilistically a random
bitstring of length 32 or 64 bits. Since hashing is deterministic, all occurrences of a user are
mapped to the same bitstring.

• K-Minimum Values [29], with parameter k, maintains a list of the k smallest hashes that
have been added to the sketch. With 32-bit hashes, it has a memory usage of m = 32 · k,
and its unbiased estimator has a RSE of approximately 1√

k
' 5.66√

m
[45].

• Probabilistic Counting with Stochastic Averaging [154] (PCSA, also known as FM-
sketches) maintains a list of k bit arrays. When an record is added to an FM-sketch,
its hash is split into two parts. The first part determines which bit array is modified.
The second part determines which bit is flipped to 1, depending on the number of
consecutive zeroes at the beginning. With k registers and 32-bit hashes, its memory
usage is m = 32 · k, and its RSE is approximately 0.78√

k
' 4.41√

m
.

• LogLog [120] maintains a tuple of k registers. Like PCSA, it uses the first part of the
hash to pick which register to modify. Then, each registers stores the maximum number
of consecutive zeroes observed so far. Using k ≥ 64 registers and a 32-bit hash, its
memory usage is m = 5 · k bits, and its standard error is approximately 1.30√

k
' 2.91√

m
.
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• HyperLogLog [195] has the same structure and add operation as LogLog, only its
estimate operation is different. Using k ≥ 16 registers and a 64-bit hash, it has a memory
usage of m = 6 · k bits, and its standard error is approximately 1.04√

k
' 2.55√

m
.

• Bloom filters can also be used for cardinality estimation [310]. However, we could not
find an expression of the standard error for a given memory usage in the literature.

All these cardinality estimators have null or negligible (� 1) bias. Thus, their variance is
equal to their mean squared standard error. So the first four are precise, whereas we do not
know if Bloom filters are.

All examples above are deterministic cardinality estimators. For them and other determinis-
tic cardinality estimators, bias and variance only come from the randomness in the algorithm’s
inputs. We now define probabilistic cardinality estimators. Intuitively, these are algorithms
that retain all the useful properties of deterministic cardinality estimators, but may flip coins
during computation. We denote by S the set of distributions over S.

Definition 67. A probabilistic cardinality estimator is a tuple
〈
S∅, add, merge, estimate

〉
,

where

• S∅ ∈ S is the empty sketch;

• add (S , t) : S × T −→ S is the probabilistic operation that adds the record e to the
sketch S and returns an updated sketch;

• merge (S 1, S 2) : S×S −→ S is the probabilistic operation that merges two sketches
S 1 and S 2; and

• estimate (S ) : S −→N estimates the number of unique records that have been added
to the sketch.

Both the add and merge operations can be extended to distributions of sketches. For a
distribution of sketches σ and an record e, add (σ, t) denotes the distribution such that:

P [add (σ, t) = S 0] =
∑
M

P [σ = S ]P [add (S , t) = S 0] .

For two distributions of sketches σ and σ′, merge (σ,σ′) denotes the distribution such that:

P [merge (σ,σ′) = S 0] =
∑
S ,S ′

P [σ = S ]P [σ′ = S ′]P [merge (S , S ′) = S 0] .

We want probabilistic cardinality estimators to have the same high-level properties as
deterministic cardinality estimators: idempotence, commutativity, and the existence of a
well-behaved merge operation. In the deterministic case, the idempotence and commutativity
of the add operation was sufficient to show the existence of a merge operation with the desired
properties. In the probabilistic case, this no longer holds. Instead, we require the following
two properties.
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Figure 3.7: System and attacker model

• For a set E ⊆ T , let σE denote the sketch distribution obtained when adding records
of E successively into S∅. The mapping from E to σE must be well-defined: it must
be independent of the order in which we add records, and possible repetitions. This
requirement encompasses both idempotence and commutativity.

• For two subsets E1 and E2 of T , we require that:

merge (σE1 ,σE2 ) = σE1∪E2 .

These requirements encompass the results of Lemma 3.

These properties, like in the deterministic case, are very strong. They impose that an
arbitrary number of sketches can be aggregated without losing accuracy during the aggregation
process. This requirement is however realistic in many practical contexts, where the same
sketches are used for fine-grained analysis and for large-scale cardinality estimation. If this
requirement is relaxed, and the cardinality estimator is allowed to return imprecise results
when merging sketches, our negative results do not hold.

For example, Tschorsch and Scheuermann proposed a cardinality estimation scheme [369]
which adds noise to sketches to make them satisfy privacy guarantees in a distributed context.
However, their algorithm is not a probabilistic cardinality estimator according to our defi-
nition: noisy sketches can no longer be aggregated. Indeed, [369] explains that “combining
many perturbed sketches quickly drives [noise] to exceedingly high values.” In our setting,
aggregation is crucial, so we do not further consider their algorithm.

3.3.1.3 Privacy for cardinality estimators

In this section, we describe our system and attacker model, and present the privacy definition
we use in our setting.

Figure 3.7 shows our system and attacker model. The service provider collects sensitive
data from many users over a long time span. The raw data is stored in a database. Over shorter
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time periods (e.g. an hour, a day, or a week), a cardinality estimator aggregates all data into a
sketch. Sketches of all time periods are stored in a sketch database. Sketches from different
times are aggregated into sketches of longer time spans, which are also stored in the database.
Estimators compute user statistics from the sketches in the database, which are published.
The service provider may also publish the sketches via an analytics service for other parties.

The attacker knows all algorithms used (those for sketching, aggregation, and estimation,
including their configuration parameters such as the hash function and the number of buckets)
and has access to the published statistics and the analytics service. They control a small
fraction of the users that produce user data. However, they can neither observe nor change the
data of the other users. They also do not have access to the database containing the raw data.

In this work, we mainly consider an internal attacker who has access to the sketch database.
For this internal attacker, the goal is to discover whether their target belongs to a given sketch.
We then discuss how our results extend to weaker external attackers, which can only use
the analytics service. We will see that for our main results, the attacker only requires access
to one sketch. The possibility to use multiple sketches will only come up when discussing
mitigations strategies in Section 3.3.4.1.

3.3.1.4 Privacy definition

We now present the privacy definition used in our main result. Given the system and attacker
just described, our definition captures the impossibility for the attacker to gain significant
positive knowledge about a given target. This privacy requirement is very weak: reasonable
definitions used for practical algorithms would likely be stronger. Working with a weak
definition strengthens our negative result: if a cardinality estimator satisfying our weak
privacy definition cannot be precise, then this is also the case for cardinality estimators
satisfying a stronger definition.

Definition 68. A cardinality estimator satisfies ε-sketch privacy above cardinality N if for
every n ≥ N, t ∈ T , and S ∈ S, the following inequality holds:

Pn [S E = S | t ∈ E] ≤ eε ·Pn [S E = S | t < E] .

Here, the probability Pn is taken over:

• a uniformly chosen set E ∈ Pn (T ), where Pn (T ) is the set of all possible subsets
E ⊆ T of cardinality n; and

• the coin flips of the algorithm, for probabilistic cardinality estimators.

This notion is a good example of the conclusion of Section 2.2: multiple variants and
extensions of differential privacy are combined to find a definition that fits exactly to a specific
use case. It has three important characteristics.

1. No background knowledge: this definition assumes an attacker that has total uncertainty
over the data: no record is known, and the input distribution is assumed to be completely
uniform. The absence of any partial knowledge makes it a special case of definitions
from Section 2.2.5; in Section 3.1.3, we saw that in this specific case, APK-DP and
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PPK-DP are equivalent. In practice, a realistic attacker might have more information
about the data, so a stronger privacy definition would model this prior knowledge by a
larger family of probability distributions. More precisely, since the records of E are
uniformly distributed in T , the prior knowledge from the attacker Pn [t ∈ E] is exactly
|E|/ |T |. A realistic attacker would likely have a larger prior knowledge about their
target. However, any reasonable definition of privacy would also include the case where
the attacker does not have more information on their target than on other users and, as
such, would be stronger than ε-sketch privacy.

2. Asymmetry: we only consider the positive information gain by the attacker. Following
a reasoning to the prior-posterior bound property of DP shown in Section 2.1.6.2,
ε-sketch privacy imposes an upper bound on the probability that notion of knowledge
gain is similar to the one in t ∈ E given the observation S , but no lower bound. In other
words, the attacker is allowed to deduce with absolute certainty that t < E. In practice,
both positive and negative information gains may present a privacy risk. In our running
example (see Example 10), deducing that a user did not spend the night at their place
of residence could be problematic.

3. Minimum cardinality: we only require a bound on the information gain for cardinalities
larger than a parameter N. In practice, N could represent a threshold over which it is
considered safe to publish sketches or to relax data protection requirements. Choosing
a small N (like N = 10) strengthens the privacy definition, while choosing a large
N (like N = 500) limits the utility of the data, as many smaller sketches cannot be
published.

The first characteristic is a variant of DP alongside our dimension B (Section 2.2.5), while
the former two are reducing the scope of the definition in a similar way than variants from
dimension N (Section 2.2.3). Later, in Section 3.3.3, we consider even weaker privation
notions, by combining our definition with variants from dimensions Q (Section 2.2.2) and V
(autorefsec:v).
ε-sketch privacy is trivially strictly weaker than differential privacy, and can almost be

expressed as an instance of pufferfish privacy (Definition 35), except its asymmetry. It is
immediate to show that ε-sketch privacy satisfies both privacy axioms (Definition 9).

We emphasize again that these characteristics, which result in a very weak definition, make
our notion of privacy well-suited to proving negative results. If satisfying our definition is
impossible for an accurate cardinality estimator, then a stronger definition would similarly be
impossible to satisfy. For example, any reasonable choice of distributions used to represent
the prior knowledge of the attacker would include the uniform distribution.

3.3.2 Private cardinality estimators are imprecise

Let us return to our privacy problem: someone with access to a sketch wants to know whether
a given individual belongs to the aggregated individuals in the sketch. Formally, given a
target t and a sketch S E , the attacker must guess whether t ∈ E with high probability. In Sec-
tion 3.3.2.1, we explain how the attacker can use a simple test to gain significant information
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Figure 3.8: Minimum standard error for a cardinality estimator with ε-sketch privacy above cardinality
100 (left) and 500 (right). The dotted line is the relative standard error of HyperLogLog
with standard parameters.

if the cardinality estimator is deterministic. Then, in Section 3.3.2.2, we reformulate the main
technical lemma in probabilistic terms, and prove an equivalent theorem for probabilistic
cardinality estimators.

3.3.2.1 Deterministic case

Given a target t and a sketch S E , the attacker can perform the following simple attack to guess
whether t ∈ E. They can try to add the target t to the sketch S E , and observe whether the
sketch changes. In other words, they check whether add (S E , t) = S E . If the sketch changes,
this means with certainty that t < E. Thus, Bayes’ law indicates that if add (S E , t) = S E ,
then the probability of t ∈ E cannot decrease.

How large is this increase? Intuitively, it depends on how likely it is that adding an record to
a sketch does not change it if the record has not previously been added to the sketch. Formally,
it depends on P [add (S E , t) = S E

∣∣∣ t < E].

• If P [add (S E , t) = S E
∣∣∣ t < E] is close to 0, for example if the sketch is just a list of

all records seen so far, then observing that add (S E , t) = S E will lead the attacker to
believe with high probability that t ∈ E.

• If P [add (S E , t) = S E
∣∣∣ t < E] is close to 1, it means that adding an record to a sketch

often does not change it. The previous attack does not reveal much information. But
then, it also means that many records are ignored when they are added to the sketch,
that is, the sketch does not change when adding the record. Intuitively, the accuracy of
an estimator based solely on a sketch that ignores many records cannot be very good.

We formalize this intuition in the following theorem.

Theorem 7. An unbiased deterministic cardinality estimator that satisfies ε-sketch privacy
above cardinality N is not precise. Namely, its variance is at least 1−ck

ck (n − k · N), for any
n ≤ N and k ≤ n

N , where c = 1 − e−ε
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Proof. The proof is comprised of three steps, following the intuition previously given.

1. We show that a sketch S E , computed from a random set E with an ε-sketch private
estimator above cardinality N, will ignore many records after N (Lemma 4).

2. We prove that if a cardinality estimator ignores a certain ratio of records after adding
n = N records, then it will ignore an even larger ratio of records as n increases
(Lemma 5).

3. We conclude by proving that an unbiased cardinality estimator that ignores many
records must have a large variance (Lemma 6).

The theorem follows directly from these lemmas. �

Note that if we were using differential privacy, this result would be trivial: no deterministic
algorithm can ever be differentially private. However, this is not so obvious for our definition
of privacy: prior work [36, 46, 176] as well as the results in Section 3.2 show that when the
attacker is assumed to have some uncertainty about the data, even deterministic algorithms
can satisfy the corresponding definition of privacy.

Figure 3.8 shows plots of the lower bound on the standard error of a cardinality estimator
with ε-sketch privacy at two cardinalities (100 and 500). It shows that the standard error
increases exponentially with the number of records added to the sketch. This demonstrates
that even if we require the privacy property for a large value of N (500) and a relatively large
ε, the standard error of a cardinality estimator will become unreasonably large after 20,000
records.

Lemma 4. Let t ∈ T . A deterministic cardinality estimator with ε-sketch privacy above
cardinality N satisfies Pn [add (S E , t) = S E

∣∣∣ t < E] ≥ e−ε for n ≥ N.

Proof. We first prove that such an estimator also satisfies

Pn [add (S E , t) = S E
∣∣∣ t ∈ E] ≤ eε ·Pn [add (S E , t) = S E

∣∣∣ t < E] .

We decompose the left-hand side of the inequality over all possible values of S E which that
add (S E , t) = S E . If we abbreviate this set It =

{
M

∣∣∣ add (S , t) = S
}
, we have:

Pn [add (S E , t) = S E
∣∣∣ t ∈ E] =

∑
S∈It

Pn [S E = S | t ∈ E]

≤ eε ·
∑

S∈It
Pn [S E = S | t < E]

≤ eε ·Pn [add (S E , t) = S E
∣∣∣ t < E] ,

where the first inequality is obtained directly from the definition of ε-sketch privacy.
Now, Lemma 2 gives Padd(S E ,t)=S E

[t ∈ E] = 1, and finally:

Pn [add (S E , t) = S E
∣∣∣ t < E] ≥ e−ε.

�
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Lemma 5. Let t ∈ T . Suppose a deterministic cardinality estimator satisfies

Pn [add (S E , t) = S E
∣∣∣ t < E] ≥ p

for any n ≥ N. Then for any integer k ≥ 1, it also satisfies Pn [add (S E , t) = S E
∣∣∣ t < E] ≥

1 − (1 − p)k, for n ≥ k · N.

Proof. First, note that if F ⊆ E, and add (S F , t) = S F , then add (S E , t) = S E . This is a
direct consequence of Lemma 3: S E = merge (S E\F , S F), so:

add (S E , t) = merge (S E\F , add (S F , t))

= merge (S E\F , S F)

= S E

We show next that when n ≥ k · N, generating a set E ∈ Pn (T ) uniformly randomly can
be seen as generating k independent sets in PN (T ), then merging them. Indeed, generating
such a set can be done by as follows:

1. For each i ∈ {1, . . . , k}, generate a set Ei ⊆ PN (T ) uniformly randomly, then take the
union of all these sets: E∪ =

⋃
i Ei.

2. If some records appear in multiple Ei, the total cardinality might be lower than n, so
we need add records uniformly at random to reach the desired cardinality: calculate
d = |E∪|, then generate a set E′ ∈ Pn−d (T\E∪) uniformly randomly.

3. Add the missing items to complete the set: E = E∪ ∪ E′.

Step 1 ensures that we used k independent sets of cardinality N to generate E, and step 2 and
3 ensure that E has exactly n records.

Intuitively, each time we generate a set Ei of cardinality N uniformly at random in T , we
have one chance that t will be ignored by Ei (and thus by E). So t can be ignored by S E with
a certain probability because it was ignored by S E1 . Similarly, it can also be ignored because
of S E2 , etc. Since the choice of Ei is independent of the choice of records in

⋃
j,i E j, we can

rewrite:

Pn [add (S E , t) , S E
∣∣∣ t < E] ≤

k∏
i=1

Pn [add (S Ei , t) , S Ei

∣∣∣ t < E]

≤

k∏
i=1

(
1 −Pn [add (S Ei , t) = S Ei

∣∣∣ t < ei]
)

≤ (1 − p)k

using the hypothesis of the lemma. Thus:

Pn [add (S E , t) = S E
∣∣∣ t < E] ≥ 1 − (1 − p)k.

�
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Lemma 6. Suppose a deterministic cardinality estimator satisfies:

Pn [add (S E , t) = S E
∣∣∣ t < E] ≥ 1 − p

for any n ≥ N and all t. Then its variance for n ≥ N is at least 1−p
p (n − N).

Proof. The proof’s intuition is as follows. The hypothesis of the lemma requires that the
cardinality estimator, on average, ignores a proportion 1 − p of new records added to a sketch
(once N records have been added): the sketch is not changed when a new record is added.
The best thing that the cardinality estimator can do, then, is to store all records that it does
not ignore, count the number of unique records among these, and multiply this number by
1/p to correct for the records ignored. It is well-known that estimating the size k of a set
based on the size of a uniform sample of sampling ratio p has a variance of 1−p

p k. Hence, our

cardinality estimator has a variance of at least 1−p
p (n − N).

Formalizing this idea requires some additional technical steps, and the proof is decomposed
into three steps. In Step 1, we fix the first N records added to the sketch, and we bound
the variance of the estimator that has these records as initial input. In Step 2, we explicitly
compute the probability for an record t to be ignored by S E , first when t is fixed, then when
E is fixed. We then use these results in Step 3 to average the bound over all possible choices
for the N records in E, which gives us an overall bound.

Step 1: Bound the estimator variance.
Let E ∈ PN (T ). Let XE =

{
t ∈ T

∣∣∣ add (S E , t) , S E
}

be the set of records that are not
ignored by S E . Let pE = |XE |

|T |
, or equivalently, let pE = Pt [add (S E , t) , S E

∣∣∣ t < E], where
Pt is the distribution that picks t uniformly randomly in T .

XE can be seen as the sampling set of the estimator with E as initial input, while pE can be
seen as its sampling fraction: all other records are discarded, so the estimator only has access
to records in E and XE to compute its estimate.

The optimal estimator to minimize variance in this context simply counts the exact number
of distinct records in the sample (remembering each one), and divides this number by pE to
estimate the total number of distinct records.2

What is the variance Vn|E of this optimal estimator? Suppose we added n − N records
after reaching the sampling part. The number of records in the sample is a random variable
with variance pE (1 − pE) (n − N). Dividing this random variable by pE gives a variance of
1−pE

pE
· (n − N). Thus:

Vn|E ≥
1 − pE

pE
· (n − N) .

Since the first N records are chosen uniformly at random, the variance of the overall
estimator is bounded by their average. If we denote by PN (T ) the set of all possible subsets
E ⊆ T of cardinality N, we have:

Vn ≥ avgE∈PN (T )
1 − pE

pE
(n − N) (3.1)

2 The optimality of an estimator under these constraints is proven e.g. in [62].
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where avg stands for the average.

Step 2: Intermediary results.
Fix E ∈ PN (T ). Denoting by 1X the function whose value is 1 if X is satisfied and 0

otherwise,

Pt [add (S E , t) , S E
∣∣∣ t < E] =

Pt [add (S E , t) , S E , t < E]
Pt [t < E]

=
|T |

|T | − N
· avgt∈T

(
1add(S E ,t),S E

)
. (3.2)

Indeed, Pt [t < E] = |T |−N
|T |

is straightforward, and since t ∈ E implies add (S E , t) = S E , the
condition add (S E , t) , S E , t < E can be simplified to add (S E , t) , S E .

Now, fix t ∈ T . Then

PN [add (S E , t) , S E
∣∣∣ t < E] =

PN [add (S E , t) , S E , t < E]
PN [t < E]

=
|T |

|T | − N
· avgE∈PN (E)

(
1add(S E ,t),S E

)
. (3.3)

Indeed, we have

PN [t < E] =
(
|T | − 1

N

)
·

(
|T |

N

)−1

=
(|T | − 1)!

(|T | − 1 − N)!N!
·
(|T | − N)!N!
|T |!

=
|T | − N
|T |

.

Step 3: Conclude using convexity.
We now prove that avgE∈PN (T ) (pE) ≤ p. Our initial hypothesis states that for all t, we have

p ≥ PN [add (S E , t) , S E
∣∣∣ t < E]. We can average this for every t and use (3.3) and (3.2):

p ≥ avgt∈T

(
PN [add (S E , t) , S E

∣∣∣ t < E]
)

(3.3)
= avgt∈T

(
|T |

|T | − N
· avgE∈PN (E)

(
1add(S E ,t),S E

))
= avgE∈PN (T )

(
|T |

|T | − N
· avgt∈T

(
1add(S E ,t),S E

))
(3.2)
= avgE∈PN (T )

(
Pt [add (S E , t) , S E

∣∣∣ t < E]
)

≥ avgE∈PN (T ) (pE) (3.4)

Now, using (3.1) and (3.4) along with the fact that the function x −→ 1−x
x · (n − N) is

convex and decreasing on (0, 1), we can conclude by Jensen’s inequality that

Vn ≥
1 − p

p
(n − N) .

�
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All existing cardinality estimators satisfy our axioms and their standard error remains low
even for large values of n. Theorem 7 shows, for all of them, that there are some users whose
privacy loss is significant. In Section 3.3.3.2, we quantify this precisely for HyperLogLog.

3.3.2.2 Probabilistic case

Algorithms that add noise to their output, or more generally, are allowed to use a source of
randomness, are often used in privacy contexts. As such, even though all cardinality estimators
used in practical applications are deterministic, it is reasonable to hope that a probabilistic
cardinality estimator could satisfy our very weak privacy definition. Unfortunately, this is not
the case.

In the deterministic case, we showed that for any record t, the probability that t has an
influence on a random sketch S decreases exponentially with the sketch size. Or, equivalently,
the distribution of sketches of size kn that do not contain t is “almost the same” (up to a density
of probability (1 − e−ε)k) as the distribution of sketches of the same size, but containing t.

The following lemma establishes the same result in the probabilistic setting. Instead of
reasoning about the probability that an record t is “ignored” by a sketch S , we reason about
the probability that t has a meaningful influence on this sketch. We show that this probability
decreases exponentially, even if P [S , add (S , t)] is very high.

First, we prove a technical lemma on the structure that the merge operation imposes on the
space of sketch distributions. Then, we find an upper bound on the “meaningful influence” of
an record t, when added to a random sketch of cardinality n. We then use this upper bound,
characterized using the statistical distance, to show that the estimator variance is as imprecise
as for the deterministic case.

Definition 69. Let V be the real vector space spanned by the family {σE |E ⊆ T } (seen as
vectors of RS). For any probability distributionsσ,σ′ ∈ V, we denoteσ ·σ′ = merge (σ,σ′).
We show in Lemma 7 that this notation makes sense: on V, we can do computations as if
merge was a multiplicative operation.

Lemma 7. The merge operation defines a commutative and associative algebra on V.

Proof. By the properties required from probabilistic cardinality estimators in Definition 67,
the merge operation is commutative and associative on the family {σE |E ⊆ T }. By linearity
of the merge operation, these properties are preserved for any linear combination of vectors
σE . �

Lemma 8. Suppose a cardinality estimator satisfies ε-sketch privacy above cardinality N,
and let t ∈ T . Let σout,n be the distribution of sketches obtained by adding n uniformly
random records of T\ {t} into S∅ (or, equivalently, σout,n (S ) = Pn [S E = S |t < E]). Then:

υ (σout,kn, add (σout,kn, t)) ≤ (1 − e−ε)k

where υ is the statistical distance between probability distributions.
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Proof. Let σin,n (S ) be the distribution of sketches obtained by adding t, then n− 1 uniformly
random records of T into S (or, equivalently, σin,n (S ) = Pn [S E = S |t ∈ E]). Then the
definition of ε-sketch privacy gives that for every sketch S , σout,n (S ) ≥ e−εσin,n (S ). So we
can express σout,n as the sum of two distributions:

σout,n = e−εσin,n + (1 − e−ε) ς

for a certain distribution ς.
First, we show that σout,kn = (σout,n)

k
·σ for a certain distribution σ. Indeed, to generate a

sketch of cardinality kn that does not contain t uniformly randomly, one can use the following
process.

1. Generate k random sketches of cardinality n which do not contain t, and merge them.

2. For all E ⊆ T , denote by pE the probability that the k sketches were generated with the
records in E. There might be “collisions” between the k sketches: if several sketches
were generated using the same record, |E| < kn. When this happens, we need to
“correct” the distribution, and add additional records. Enumerating all the options, we
denote σ =

∑
pEσ

c
E,nk, where σc

E,nk is obtained by adding nk − |E| uniformly random

records in T\E to S∅. Thus, σout,kn = (σout,n)
k
·σ.

Note that these distributions are in V: we can write σout,n = avgE∈Pn(T ),t<EσE , and

similarly for σin,n = avgE∈Pn(T )T ,t∈EσE , as well as ς = (1 − e−ε)−1 (σout,n − e−εσin,n), etc.
Thus:

σout,kn = (σout,n)
k
·σ

= (e−εσin,n + (1 − e−ε) ς)k
·σ

=
k∑

i=0

(
k
i

)
e−i·ε(1 − e−ε)k−i

σi
in,n · ς

k−i ·σ.

Denoting α =
∑k

i=1 (
k
i)e
−i·ε(1 − e−ε)k−iσi−1

in,n · ς
k−i ·σ and β = ςk ·σ, this gives us:

σout,kn = α ·σin,n + (1 − e−ε)k
β.

Finally, we can compute add (σout,kn, t):

add (σout,kn, t) = α ·σin,n ·σ{t} + (1 − e−ε)k
β ·σ{t}

= α ·σin,n + (1 − e−ε)k
β ·σ{t}
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Note that since σin,n = avgE∈Pn(T ),t∈EσE , we have σin,n · σ{t} = σin,n by idempotence,
and:

υ (σout,kn, add (σout,kn, t))

=
1
2

∥∥∥σout,kn − add (σout,kn, t)
∥∥∥

1

=
1
2

∥∥∥∥(1 − e−ε)k
β − (1 − e−ε)k

β ·σ{t}

∥∥∥∥
1

≤
(1 − e−ε)k

2

(
‖β‖1 +

∥∥∥β ·σ{t}∥∥∥1

)
≤ (1 − e−ε)k.

�

Lemma 8 is the probabilistic equivalent of Lemmas 4 and 5. Now, we state the equivalent
of Lemma 6, and explain why its intuition still holds in the probabilistic case.

Lemma 9. Suppose that a cardinality estimator satisfies, for any n ≥ N and all t:

υ (σout,n, add (σout,n, t)) ≤ p.

Then its variance for n ≥ N is at least 1−p
p (n − N).

Proof. The condition “υ (σout,n, add (σout,n, t)) ≤ p” is equivalent to the condition of
Lemma 6: with probability (1 − p), the cardinality estimator “ignores” when a new record t is
added to a sketch. Just like in Lemma 6’s proof, we can convert this constraint into estimating
the size of a set based on a sampling set. The best known estimator for this problem is deter-
ministic, so allowing the cardinality estimator to be probabilistic does not help improving the
optimal variance.

The same result than in Lemma 6 follows. �

Lemmas 8 and 9 together immediately lead to the equivalent of Theorem 7 in the proba-
bilistic case.

Theorem 8. An unbiased probabilistic cardinality estimator that satisfies ε-sketch privacy
above cardinality N is not precise. Namely, its variance is at least 1−ck

ck (n − k · N), for any
n ≤ N and k ≤ n

N , where c = 1 − e−ε

Somewhat surprisingly, allowing the algorithm to add noise to the data seems to be pointless
from a privacy perspective. Indeed, given the same privacy guarantee, the lower bound on
accuracy is the same for deterministic and probabilistic cardinality estimators. This suggests
that the constraints of these algorithms (idempotence and commutativity) require them to
somehow keep a trace of who was added to the sketch (at least for some users), which is
fundamentally incompatible with even weak notions of privacy.



144 differential privacy under partial knowledge

3.3.3 Weakening the privacy definition

Our main result is negative: no cardinality estimator satisfying our privacy definition can
maintain a good accuracy. Thus, it is natural to wonder whether our privacy definition is too
strict, and if the result still holds for weaker variants.

In this section, we consider two classes of weaker variants of our privacy definition:
allowing the privacy loss to be larger than ε on some inputs (relaxing the definition alongside
dimension Q, in Section 2.2.2), and allowing some proportion of users to not be protected
(relaxing the definition alongside dimension V, in Section 2.2.4).

First, we show that for the former class of variants, our negative result still holds: allowing
a small probability of bad outcomes does not help. Second, we show that even though our
negative result does not hold for the latter class of variants, cardinality estimators used in
practice still leak a lot of information, even when we average the privacy loss across users.

3.3.3.1 Allowing larger values of the privacy loss

ε-sketch privacy provides a bound on how much information the attacker can gain in the
worst case. As exemplified by the DP variants alongside dimension Q, in Section 2.2.2, it is
natural to relax this requirement

A first natural relaxation is to accept a small probability of failure, similarly to (ε, δ)-DP
(Definition 14 in Section 2.2.2): requiring a bound on the information gain in most cases, and
accept a potentially unbounded information gain with low probability.

Definition 70. A cardinality estimator satisfies (ε, δ)-sketch privacy above cardinality N if
for every SO ⊆ S, n ≥ N, and t ∈ T ,

Pn [S E ∈ SO | t ∈ E] ≤ eε ·Pn [S E ∈ SO | t < E] + δ.

Unfortunately, our negative result still holds for this variant of the definition. Indeed, we
show that a close variant of Lemma 4 holds, and the rest follows directly.

Lemma 10. Let t ∈ T . A cardinality estimator that satisfies (ε, δ)-probabilistic sketch
privacy above cardinality N satisfies, for all n ≥ N:

Pn [add (S E , t) = S E
∣∣∣ t < E] ≥

(
1
2
− δ

)
· e−ε.

Proof. First, we show that if a cardinality estimator verifies (ε, δ)-sketch privacy at a given
cardinality, then for each target t, we can find an explicit decomposition of the possible
outputs: the bound on information gain is satisfied for each possible output, except on a
density δ. This is similar to the definition of probabilistic differential privacy (Definition 15
in Section 2.2.2), except the decomposition depends on the choice of t. We then use this
decomposition to prove a variant of our negative result.

Lemma 11. If a cardinality estimator satisfies (ε, δ)-sketch privacy above cardinality N, then
for every n ≥ N and t ∈ T , we can decompose the space of possible sketches S = S1 ]S2
such that Pn [S E ∈ S2 | t ∈ E] ≤ 2δ, and for all S ∈ S1:

Pn [S E = S | t ∈ E] ≤ 2eε ·Pn [S E = S | t < E] .
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Proof. Suppose the cardinality estimator satisfies (ε, δ)-sketch privacy at cardinality N, and
fix n ≥ N and t ∈ T . Let ε′ = ε+ ln (2).

Let S1 be the set of outputs for which the privacy loss is higher than ε′. Formally, S1 is the
set of sketches S that satisfy

Pn [S E = S | t ∈ E] > eε
′

·Pn [S E = S | t < E] .

We show that S1 has a density bounded by 2δ.
Suppose for the sake of contradiction that this set has density at least 2δ given that t ∈ E:

Pn [S ∈ S1 | t ∈ E] ≥ 2δ.

We can sum the inequalities in S1 to obtain:

Pn [S E ∈ S1 | t ∈ E] > eε
′

·Pn [S E ∈ S1 | t < E] .

Averaging both inequalities, we get:

Pn [S E ∈ S1 | t ∈ E] > eε ·Pn [S E ∈ S1 | t < E] + δ

since eε
′

= eε+ln(2) = 2 · eε. This contradicts the hypothesis that the cardinality estimator
satisfies (ε, δ)-sketch privacy at cardinality N.

Thus, Pn [S ∈ S1 | t ∈ E] < 2δ and by the definition of S1, every output S ∈ S2 = S \ S1
verifies:

Pn [S E = S | t ∈ E] ≤ eε
′

·Pn [S E = S | t < E] .

�

We can then use this decomposition to prove Lemma 10. Lemma 11 allows us to get two
sets S1 and S2 such that:

• Pn [S E ∈ S2 | t ∈ E] ≤ 2δ;

• and for all S ∈ S1, Pn [S E = S | t ∈ E] ≤ 2eε ·Pn [S E = S | t < E].

We decompose Pn [add (S E , t) = S E
∣∣∣ t ∈ E] into:

Pn [add (S E , t) = S E , S E ∈ S1
∣∣∣ t ∈ E] + Pn [add (S E , t) = S E , S E ∈ S2

∣∣∣ t ∈ E] .

The same reasoning as in the proof of Lemma 4 gives:

Pn [add (S E , t) = S E , S E ∈ S1
∣∣∣ t ∈ E] ≤ 2eε ·Pn [add (S E , t) = S E , S E ∈ S1

∣∣∣ t < E]

≤ 2eε ·Pn [add (S E , t) = S E
∣∣∣ t < E]

and since Pn [S E ∈ S2 | t ∈ E] ≤ 2δ, we immediately have:

Pn [add (S E , t) = S E , M ∈ S2
∣∣∣ t ∈ E] ≤ 2δ.

We conclude that

Pn [add (S E , t) = S E
∣∣∣ t ∈ E] ≤ 2eε ·Pn [add (S E , t) = S E

∣∣∣ t < E] + 2δ.
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Now, Lemma 2 gives P [add (S E , t) = S Ec] t ∈ E = 1, and finally:

Pn [add (S E , t) = S E
∣∣∣ t < E] ≥

(
1
2
− δ

)
· e−ε.

�

We can then deduce a theorem similar to our negative result for our weaker privacy
definition.

Theorem 9. An unbiased cardinality estimator that satisfies (ε, δ)-sketch privacy above
cardinality N has a variance at least 1−ck

ck (n − k · N) for any n ≤ N and k ≤ n
N , where

c = 1 −
(

1
2 − δ

)
· e−ε. It is therefore not precise if δ < 0.5.

Proof. This follows from Lemmas 10, 5, and 6. �

Instead of requiring that the attacker’s information gain is bounded by ε for every possible
output, we could bound the average information gain. This is equivalent to accepting a larger
privacy loss in some cases, as long as other cases have a lower privacy loss. This intuition is
similar to ε-Kullback-Leiber privacy (Definition 16 in Section 2.2.2), often used in similar
contexts [104, 133, 327, 328]. In our case, we adapt it to maintain the asymmetry of our
original privacy definition. First, we give a formal definition the privacy loss of a user t given
output S .

Definition 71. Given a cardinality estimator, the positive privacy loss of t given output S at
cardinality n is defined as

εn,t,M = max
(
ln

(
Pn [S E = S | t ∈ E]
Pn [S E = S | t < E]

)
, 0

)
.

This privacy loss is never negative: this is equivalent to discarding the case where the
attacker gains negative information. Now, we bound this average over all possible values of
S E , given t ∈ E.

Definition 72. A cardinality estimator satisfies ε-sketch KL privacy above cardinality N if
for every n ≥ N and t ∈ T , we have∑

S

Pn [S E = S | t ∈ E] · εn,t,M ≤ ε.

It is easy to check that ε-sketch KL privacy above cardinality N is strictly weaker than ε-
sketch privacy above cardinality N. Unfortunately, this definition is also stronger than (εδ, δ)-
sketch privacy above cardinality N for certain values of ε and δ, and as such, Lemma 10 also
applies. We prove this in the following lemma.

Lemma 12. If a cardinality estimator satisfies ε-sketch KL privacy above cardinality N, then
it also satisfies

(
ε
δ , δ

)
-sketch privacy above cardinality N for any δ > 0.
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Proof. Let n ≥ N and δ > 0. Suppose that a cardinality estimator does not satisfy
(
ε
δ , δ

)
-

sketch privacy at cardinality n. Then with probability strictly larger than δ, the output does
not satisfy ε

δ -sketch privacy. Formally there is S2 ⊆ S such that Pn [S E ∈ S2 | t ∈ E] > δ,
and such that εn,t,M > ε

δ for all S ∈ S2. Since all values of εn,t,M are positive, we have∑
S

Pn [S E = S | t ∈ E] · εn,t,M ≥
∑

S∈S2

Pn [S E = S | t ∈ E] · εn,t,M

>
ε

δ

∑
S∈S2

Pn [S E = S | t ∈ E]

> ε.

Hence this cardinality estimator does not satisfy ε-sketch average privacy at cardinality n. �

This lemma leads to a similar version of the negative result.

Theorem 10. An unbiased cardinality estimator that satisfies ε-sketch KL privacy above
cardinality N has a variance at least 1−ck

ck (n − k · N) for any n ≤ N and k ≤ n
N , where

c = 1 − e−4ε

4 . It is therefore not precise.

Proof. This follows directly from Lemma 12 with δ = 1
4 , and Theorem 9. �

Recall that all existing cardinality estimators satisfy our axioms and have a bounded
accuracy. Thus, an immediate corollary is that for all cardinality estimators used in practice,
there are some users for which the average privacy loss is very large.

Note that we could obtain a result similar to Theorem 9 with another notion of average,
using for example the same approach as Rényi DP (Definition 17 in Section 2.2.2). We could
either simply use the fact that Rényi DP with α > 1 is strictly stronger than KL privacy, or
use the same reasoning to Proposition 3 in [284] to show that such a notion of average also
implies (ε, δ)-sketch privacy with even lower parameters.

3.3.3.2 Privacy loss of individual users

ε-sketch privacy protects all users uniformly. Similarly to the variants of DP from dimension
V, we could relax this requirement and allow some users to have less privacy than others.
Variants obtained this way would generally not be sufficiently convincing to be used in
practice: one typically wants to protect all users, not just a majority of them. In this section,
we show that even if we relax this requirement, cardinality estimators would in practice leak
a significant amount of information.

Allowing unbounded privacy loss for some users

First, what happens if we allow some users to have unbounded privacy loss? We could achieve
this by requiring the existence of a subset of users T ⊆ T of density 1− γ, such that every user
in T is protected by ε-sketch privacy above cardinality N. In this case, a ratio γ of possible
targets are not protected. This would be somewhat similar to random DP (Definition 29 in
Section 2.2.4), except the unprotected users are always the same.
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This approach only makes sense if the attacker cannot choose the target t. For our attacker
model, this might be realistic: suppose that the attacker wants to target just one particular
person. Since all user identifiers are hashed before being passed to the cardinality estimator,
this person will be associated to a hash value that the attacker can neither predict nor influence.
Thus, although the attacker picks t, the true target of the attack is h(t), which the attacker
cannot choose.

Unfortunately, this drastic increase in privacy risk for some users does not lead to a large
increase in accuracy. Indeed, the best possible use of this ratio γ of users from an accuracy
perspective would simply be to count exactly the users in a sample of sampling ratio γ.

Estimating the total cardinality based on this sample, similarly to what the optimal estimator
in the proof of Lemma 6 does, leads to a variance of 1−γ

γ · (n − N), which is very large if γ is
reasonably small. With e.g. γ ' 10−4, this variance is too large for counting small values of n
(say, n ' 1000 and N ' 100). This is not surprising: if 99.99% of the values are ignored by
the cardinality estimator, we cannot expect it to count values of n on the order of thousands.
But even this value of γ is larger than the δ typically used with (ε, δ)-differential privacy,
where δ is often chosen to be o(1/n).

But in our running example, sketches must yield a reasonable accuracy both at small and
large cardinalities, if many sketches are aggregated. This implicitly assumes that the service
operates at a large scale, say with at least 107 users. With γ = 10−4, this means that thousands
of users are not covered by the privacy property. This is unacceptable for most applications.

Averaging the privacy loss across users

Instead of requiring the same ε for every user, we could require that the average information
gain by the attacker is bounded by ε. This approach is similar to on-average KL privacy [381],
which we mentioned in Section 2.2.4. In this section, we take the example of HyperLogLog to
show that accuracy is not incompatible with this notion of average privacy, but that cardinality
estimators used in practice do not preserve privacy even if we average across all users.

First, we define this notion of average information gain across users.

Definition 73. Recall the definition of the positive privacy loss εn,t,M of t given output S at
cardinality n from Definition 71:

εn,t,M = max
(
ln

(
Pn [S E = S | t ∈ E]
Pn [S E = S | t < E]

)
, 0

)
.

The maximum privacy loss of t at cardinality n is defined as: εn,t = maxS (εn,t,M). A
cardinality estimator satisfies ε-sketch privacy on average if we have, for all n, 1

|T |

∑
t∈T εn,t ≤

ε.

In this definition, we accept that some users might have less privacy as long as the average
user satisfies our initial privacy definition. Here, we average over all values of ε, but like we
described at the end of Section 3.3.3.1, we could use other averaging functions, which would
lead to strictly stronger definitions.

We show that HyperLogLog satisfies this definition, and we discuss the value of ε for
various parameters and their significance. Intuitively, a HyperLogLog cardinality estimator
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puts every record in a random bucket, and each bucket counts the maximum number of leading
zeroes of records added in this bucket. HyperLogLog cardinality estimators have a parameter
p that determines its memory consumption, its accuracy, and, as we will see, its level of
average privacy.

Definition 74. Let h be a uniformly distributed hash function. A HyperLogLog cardinality
estimator of parameter p is defined as follows. A sketch consists of a list of 2p counters
C0, . . . , C2p−1, all initialized to 0. When adding an record e to the sketch, we compute h(e),
and represent it as a binary string x = x1x2 . . .. Let b(e) =

〈
x1 . . . xp

〉
2
, i.e., the integer

represented by the binary digits x1 . . . xp, and ρ (e) be the position of the leftmost 1-bit in
xp+1xp+2 . . .. Then we update counter Cb(e) with Cb(e) ← max

(
Cb(e), ρ (e)

)
.

For example, suppose that x = 10001101 . . . and p = 2, then b (e) = 〈10〉2 = 2, and
ρ (e) = 3 (the position of the leftmost 1-bit in 001101 . . .). So we must look at the value for
the counter C2 and, if C2 < 3, set C2 to 3.

Theorem 11. Assuming a sufficiently large |T |, a HyperLogLog cardinality estimator of
parameter p satisfies εn-sketch privacy above cardinality N on average where for N ≥ n,

εn ' −
∑
k≥1

2−k ln
(
1 −

(
1 − 2−p−k

)n)
.

Proof. To simplify our analysis, we assume in this proof that |T | is very large: for all
reasonable values of n, picking n records uniformly at random in T is the same as picking a
subset of T of size n uniformly at random. In particular, we approximate Pn [S E = S | t < E]
by Pn [S E = S ].

First, we compute εn,t,M for each S , by considering the counter values of S . We then use
this to determine εn,t, and averaging them, deduce the desired result.

Step 1: Computing εn,t,M
Let t ∈ T , and S ∈ S such that Pn [S E = S | t ∈ E] > 0. Decompose the binary string

h (t) = x into two parts to get b (t) and ρ (t). Denote by C0, . . . , C2p−1 the counters of S .
Note that S = S E is characterized by two conditions:

• REACHE(i) for all 0 ≤ i < 2p, where REACHE(i) denotes the condition that if
bucket i is non-empty, then an record with this number of leading zeroes was added in
this bucket. Formally, REACHE(i) iff whenever Ci > 0, there exists e ∈ E such that
b(e) = i and ρ(e) = Ci.

• SAXE , where SAXE denotes the condition that no record has more leading zeroes than
the counter for its bucket. Formally, SAXE iff for all e ∈ E, ρ(e) ≤ Cb(e).

Now, we compute the value of εn,t,M , depending on the value of Cb(t). Without loss of
generality, we assume that b(t) = 0.

Case 1: Suppose C0 = ρ(t).
We compute the probability of observing S given t ∈ E. REACHE (0) is already satisfied

by t as C0 = ρ (t). So for S E to be equal to S , E’s other records only have to satisfy
REACH (i) for i ≥ 1, and SAXE :

Pn [S E = S | t ∈ E] = Pn−1 [SAXE , REACHE(i) for all i ≥ 1] .
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Next, we compute the probability of observing S given t < E. This time, all records of E
are chosen randomly, so

Pn [S E = S | t < E] ' Pn [S E = S ]

= Pn [SAXE , REACHE(i) for all i] .

We can decompose this condition: there is a witness e ∈ E for REACHE(0) (i.e., b(e) = 0
and ρ(e) = C0 = ρ(t)) and all others records satisfy the same conditions as in the case t ∈ E,
namely SAXE and for all i ≥ 1, REACHE(i), since this is equivalent to SAXE\{e} and for all
i ≥ 1, REACHE\{e}(i) by the choice of e. If e is chosen uniformly in T , since h is a uniformly
distributed hash function, then the following holds.

• The probability of b(e) = 0 is 2−p.

• The probability of ρ(e) = ρ(t) is 2−ρ(t): if we denote h(t) = x1 . . . xp.xp+1 . . ., then
xp+1 = 1 with probability 1/2, xp+1xp+2 = 01 with probability 1/4, etc.

Thus, the probability that an record e witnesses REACHE(0) is 2−p−ρ(t) as x1 . . . xp are
independent of xp+1xp+2 . . .. Since the set E has size n, there are n possible chances that
such an record is chosen: the probability that at least one record witnesses REACHE(0) is
1 −

(
1 − 2−p−ρ(t)

)n
. We can thus approximate Pn [S E = S | t < E] by(

1 −
(
1 − 2−p−ρ(t)

)n)
·Pn−1 [SAXE , REACHE(i) for all i ≥ 1]

and thus
Pn [S E = S | t ∈ E]
Pn [S E = S | t < E]

'
(
1 −

(
1 − 2−p−ρ(t)

)n)−1
.

Case 2: Suppose C0 > ρ (t).
We can compute the probabilities Pn [S E = S | t ∈ E] and Pn [S E = S | t < E] in a similar

fashion.

Pn [S E = S | t ∈ E] = Pn−1 [SAXE , REACHE(i) for all i]

Pn [S E = S | t < E] ' Pn [S E = S ]

= Pn [SAXE , REACHE(i) for all i] .

Since (by hypothesis) Pn [S E = S | t ∈ E] > 0, there exist n − 1 distinct records of T
which, together, satisfy conditions SAXE and for all i, REACHE(i). This allows us to bound
Pn [S E = S ] from below. Suppose one record e of E satisfies b(e) = 0 and ρ(e) = ρ(t), and
the n− 1 other records in E \ {e} satisfy the conditions SAXE\{e} and REACHE\{e}(i) for all i.
Then E satisfies SAXE and REACHE(i) for all i. The lower bound follows as before:

Pn [S E = S | t < E] >
∼

(
1 −

(
1 − 2−p−ρ(t)

)n)
·Pn−1 [SAXE , REACHE(i) for all i]

and thus
Pn [S E = S | t ∈ E]
Pn [S E = S | t < E]

<
∼

(
1 −

(
1 − 2−p−ρ(t)

)n)−1
.
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Figure 3.9: εn as a function of n, for HyperLogLog cardinality estimators of different p parameters
(and their corresponding relative standard error).

We can use the results of both cases and immediately conclude that

εn,t,M <
∼
− ln

(
1 −

(
1 − 2−p−ρ(t)

)n)
and that the equality holds if S satisfies Cb(t) = ρ(t).

Step 2: Determining εn
The previous reasoning shows that the worst case happens when the counter corresponding

to t’s bucket contains the number of leading zeroes of t, i.e., when ρ(t) = Cb(t):

εn,t = max
S

(εn,t,M) ' − ln
(
1 −

(
1 − 2−p−ρ(t)

)n)
.

We can then average this value over all t. Since the hash function is uniformly distributed,
1/2 of the values of t satisfy ρ (t) = 1, 1/4 satisfy ρ (t) = 1/4, etc. Thus

εn ' −
∑
k≥1

2−k ln
(
1 −

(
1 − 2−p−k

)n)
.

�

How does this positive result fit practical use cases? Figure 3.9 plots εn for three different
HyperLogLog cardinality estimators. It shows two important results.

First, cardinality estimators used in practice do not preserve privacy. For example, the
default parameter used for production pipelines at Google and on the BigQuery service [48]
is p = 15. For this value of p, an attacker can determine with significant accuracy whether
a target was added to a sketch; not only in the worst case, but for the average user too. The
average risk only becomes reasonable for n ≥ 10, 000, a threshold too large for most data
analysis tasks.
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Figure 3.10: Simulation of Pn [add (S E , t) = S E
∣∣∣ t < E], for uniformly chosen values of t, using

HyperLogLog sketches with parameter p = 15.

Second, by sacrificing some accuracy, it is possible to obtain a reasonable average privacy.
For example, a HyperLogLog sketch for which p = 9 has a relative standard error of about
5%, and an εn of about 1 for n = 1000. Unfortunately, even when the average risk is
acceptable, some users will still be at a higher risk: users e with a large number of leading
zeroes are much more identifiable than the average. For example, if n = 1000, there is a 98%
chance that at least one user has ρ(e) ≥ 8. For this user, εn,t ' 5, a very high value.

Our calculations yield only an approximation of εn that is an upper bound on the actual
privacy loss in HyperLogLog sketches. However, these alarming results can be confirmed
experimentally. We simulated Pn [add (S E , t) = S E

∣∣∣ t < E], for uniformly random values
of t, using HyperLogLog sketches with the parameter p = 15. For each cardinality n, we
generated 10,000 different random target values, and added each one to 1,000 HyperLogLog
sketches of cardinality n (generated from random values). For each target, we counted the
number of sketches that ignored it.

Figure 3.10 plots some percentile values. For example, the all-targets curve (100th per-
centile) has a value of 33% at cardinality n = 10,000. This means that each of the 10,000
random targets was ignored by at most 33% of the 1,000 random sketches of this cardinality,
i.e., Pn [add (S E , t) = S E

∣∣∣ t < E] ≤ 33% for all t. In other words, an attacker observes with
at least 67% probability a change when adding a random target to a random sketch that did not
contain it. Similarly, the 10th-percentile at n = 10,000 has a value of 3.8%. So 10% of the tar-
gets were ignored by at most 3.8% of the sketches, i.e., Pn [add (S E , t) = S E

∣∣∣ t < E] ≤ 3.8%
for 10% of all users t. That is, for the average user t, there is a 10% chance that a sketch with
10,000 records changes with likelihood at least 96.2% when t is first added.

For small cardinalities (n < 1, 000), adding an record that has not yet been added to the
sketch will almost certainly modify the sketch: an attacker observing that a sketch does not
change after adding t can deduce with near-certainty that t was added previously.
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Even for larger cardinalities, there is always a constant number of people with high privacy
loss. For n = 1,000, no target was ignored by more than 5.5% of the sketches. For n = 10,000,
10% of the users were ignored by at most 3.8% of the sketches. Similarly, the 1st percentile at n
= 100,000 and the 1st permille at n = 1,000,000 are 4.6% and 4.5%, respectively. In summary,
across all cardinalities n, at least 1,000 users t have Pn [add (S E , t) = S E

∣∣∣ t < E] ≤ 0.05.
For these users, the corresponding privacy loss is eε = 1

0.055 ' 18. Concretely, if the
attacker initially believes that Pn [t ∈ E] is 1%, this number grows to 15% after observing
that add (S E , t) = S E . If it is initially 10%, it grows to 66%. And if it is initially 25%, it
grows to 86%.

3.3.4 Mitigation strategies

A corollary of Theorem 7 and of our analysis of Section 3.3.3.2 is that the cardinality estima-
tors used in practice do not preserve privacy. How can we best protect cardinality estimator
sketches against insider threats,in realistic settings? Of course, classical data protection tech-
niques are relevant: encryption, access controls, auditing of manual accesses, etc. But in
addition to these best practices, cardinality estimators like HyperLogLog allow for specific
risk mitigation techniques, which restrict the attacker’s capabilities.

3.3.4.1 Salting the hash function with a secret

As explained in Section 3.3.1.2, most cardinality estimators use a hash function h as the
first step of the add operation: add (S , t) only depends on S and the hash value h(t). This
hash can be salted with a secret value. This salt can be made inaccessible to humans, with
access controls restricting access to production binaries compiled from trusted code. Thus,
an adversary cannot learn all the relevant parameters of the cardinality estimator and can no
longer add users to sketches. Of course, to avoid a salt reconstruction attack, a cryptographic
hash function must be used.

The use of a salt does not hinder the usefulness of sketches: they can still be merged (for
all cardinality estimators given as examples in Section 3.3.1.2) and the cardinality can still
be estimated without accuracy loss. However, if an attacker gains direct access to a sketch S
with the aim of targeting a user t and does not know the secret salt, then they cannot compute
h (t) and therefore cannot compute add (S , t). This prevents the previous obvious attack of
adding t to S and observing whether the result is different.

However, this solution has two issues.

1. Secret salt rotation: the secret salt must be the same for all sketches as otherwise
sketches cannot be merged. Indeed, if a hash function h1 is used to create a sketch S 1
and h2 is used to create S 2, then if h1 (t) , h2 (t) for some t that is added to both S 1 and
S 2, t will be seen as a different user in S 1 and S 2: the cardinality estimator no longer
ignores duplicates. Good key management practices also recommend regularly rotating
secret keys. In this context, changing the key requires recomputing all previously
computed sketches. This requires keeping the original raw data, makes pipelines more
complex, and can be computationally costly.
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2. Sketch intersection: for most cardinality estimators given as examples in Section 3.3.1.2,
it is possible for an attacker to guess h (t) from a family of sketches (S 1, . . . , S k) for
which the attacker knows that t ∈ S 1. For example, intersecting the lists stored in
K-Minimum Values sketches can provide information on which hashes come from
users that have been in all sketches. For HyperLogLog, one can use the leading zeroes
in non-empty buckets to get partial information on the hash value of users who are
in all sketches. Moreover, HyperLogLog++ [195] has a sparse mode that stores full
hashes when the sketch contains a small number of values; this makes intersection
attacks even easier.

Intersection attacks are realistic, although they are significantly more complex than
simply checking if add (S , t) = S . In our running example, sketches come from
counting users across locations and time periods. If an internal attacker wants to target
someone they know, they can gather information about where they went using side
channels like social media posts. This gives them a series of sketches S 1, . . . , S k that
they know their target belongs to, and from these, they can get information on h(t) and
use it to perform an attack equivalent to checking whether add (S , t) = S .

Another possible risk mitigation technique is homomorphic encryption. Each sketch could
be encrypted in a way that allows sketches to be merged, and new records to be added; while
ensuring that an attacker cannot do any operation without some secret key. Homomorphic
encryption typically has significant overhead, so it is likely to be too costly for most use
cases. Our impossibility results assume a computationally unbounded attacker; however, it is
possible that an accurate sketching mechanism using homomorphic encryption could provide
privacy against polynomial-time attackers. We leave this area of research for future work.

3.3.4.2 Using a restricted API

Using cardinality estimator sketches to perform data analysis tasks only requires access to two
operations: merge and estimate. So a simple option is to process the sketches over an API that
only allows this type of operation. One option is to provide a SQL engine on a database, and
only allow SQL functions that correspond to merge and estimate over the column containing
sketches. In the BigQuery SQL engine, this corresponds to allowing HLL_COUNT.MERGE
and HLL_COUNT.EXTRACT functions, but not other functions over the column containing
sketches [48]. Thus, the attacker cannot access the raw sketches.

Under this technique, an attacker who only has access to the API can no longer di-
rectly check whether add (S , t) = S . Since they do not have access to the sketch inter-
nals, they cannot perform the intersection attack described previously either. To perform
the check, their easiest option is to impersonate their target within the service, interact
with the service so that a sketch S {t} containing only their target is created in the sketch
database, and compare the estimates obtained from S and merge (S , S {t}). Following the
intuition given in Section 3.3.2.1, if these estimates are the same, then the target is more
likely to be in the dataset. How much information the attacker gets this way depends on
P [estimate (add (S E , t)) = estimate (S E) | t < E]. We can increase this quantity by round-
ing the result of the estimate operation, thus limiting the accuracy of the external attacker.
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This would make the attack described in this work slightly more difficult to execute, and less
efficient. However, it is likely that the attack could be adapted, for example by repeating it
multiple times with additional fake records.

This risk mitigation technique can be combined with the previous one. The restricted API
protects the sketches during normal use by data analysts, i.e., against external attackers. The
hash salting mitigates the risk of manual access to the sketches, e.g., by internal attackers.
This type of direct access is not needed for most data analysis tasks, so it can be monitored
via other means.

3.4 conclusion

It is natural to want to model attackers with only partial background knowledge, and to take
this uncertainty into account when quantifying the privacy properties of a given mechanism.
Certainly, in an ideal world where privacy would be the only concern, this would not be
necessary: it is safer to always assume the most powerful adversary. However, we do not live in
such a world. In practice, stakeholders frequently complain about the utility or complexity cost
of differential privacy, and question whether its use is really necessary to reach a reasonable
level of protection. Surely, aggregating data over many people is enough to prevent realistic
adversaries from getting information about single individuals?

Ignoring those complaints, or dismissing them as entirely misguided, is an inadequate
answer. Real-world adversaries do not have full background knowledge, and as such, it is
worthwhile to improve our formal understanding of the guarantees provided by this uncertainty.
This chapter provided three complementary insights about this setting.

The first insight is that modeling an attacker with partial background knowledge is more
complicated and hazardous than it initially appears. As we showed in Section 3.1.2, correctly
modelling such adversaries requires to carefully consider the influence of data correlations,
and cleanly delineate the attacker’s partial knowledge from the information that we are trying
to protect. Furthermore, as we showed in Section 3.1.3, an attacker who only passively knows
part of the data is a priori weaker than an attacker who can influence the data, so practical
applications must also consider this dichotomy—a subtlety that does not exist for classical
differential privacy. On the positive side, our work provides a solid theoretical basis for
reasoning about partial knowledge in a formal, correct way; we hope that this can be of use to
researchers and practitioners trying to quantify the privacy of given mechanisms under this
assumptions.

The second insight is that some of these intuitions about the inherent safety of certain
mechanisms under partial knowledge are correct. Results from Section 3.2.1 show that
aggregating data across many users does preserve privacy under reasonable assumptions. Our
results focus on counting, but they could easily be extended to other aggregations. Indeed, the
core insight from the proof of Theorem 3 comes from drawing a link between our setting and
amplification by shuffling. In essence, uncertainty about individual records can be expressed
with (ε, δ)-indistinguishability, and symmetric aggregation is at least as good as random
shuffling to boost privacy guarantees. This suggests that additional results and links could
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be drawn, and that both settings could be combined to obtain finer privacy analyses with
reasonable attacker assumptions.

We also showed in Section 3.2.2 that thresholding does preserve privacy against passive
attackers by providing a natural and intuitive example of the distinction between passive and
active attackers with partial knowledge. Formalizing this intuition also allows us to understand
under which conditions simple k-anonymity mechanisms preserve privacy against an attacker
with partial knowledge. This last result depends on a number of assumptions, most of which
can be linked to a corresponding weakness of k-anonymity: if one of these assumptions
does not hold, then one can find an example of when k-anonymity fails to protect individual
privacy. This shows one of the weaknesses of differential privacy under partial knowledge: it
is difficult to obtain robust results that do not depend on brittle assumptions about the exact
nature of the attacker’s uncertainty.

Finally, in Section 3.2.4, we looked at composition properties for differential privacy
with partial knowledge. By contrast to differential privacy in its original form, sequential
composition does not hold in general. However, we found that quantifying the amount of
correlation between the results of two queries can be used to compose privacy guarantees,
and that yet again, (ε, δ)-indistinguishability is a natural formalism to do so. We also raised
the interesting question of combining guarantees from partial knowledge and noise addition;
a question that we largely leave open.

The third insight, from Section 3.3, is that modeling an attacker with partial knowledge can
be used to obtain strong negative results: some practical problems are inherently impossible
to solve in a privacy-preserving way, even if we assume an attacker with complete uncertainty
over the input data. Our main result on cardinality estimation is an important first step in
this direction, and it suggests a wide range of open follow-up questions. Can we extend it to
cardinality estimators that only preserve the precision of the estimate operator when merging
them, but not necessarily the full distribution of sketches? Can we find a finer trade-off

between privacy and accuracy, allowing e.g. a small error to be incurred by each merging
operation in exchange for better privacy guarantees? Are there other similar problems that
cannot be solved in a privacy-preserving way without giving up strong aggregation properties,
e.g. sketching algorithms used for quantiles estimation?



4
F RO M T H E O RY T O P R AC T I C E

Without a plane, what was I supposed to do? Math the problem
to death?

— Mary Robinette Kowal, The Calculating Stars

Despite the academic success of differential privacy, practical applications have largely
lagged behind. Scientific papers on DP often cite a few high-profile use cases to show the
relevance of this field of research, but these examples almost always come from very large
companies or organizations: Google [141], Apple [360], the US Census Bureau [4, 159],
Microsoft [107, 224], Uber [210], and others. Is differential privacy a luxury that only large
organizations can afford?

Of course, there might be some selection bias in play in the previous observation. Re-
searchers might think that use cases from large organizations are the best way to demonstrate
practical relevance, and smaller organizations using DP might not have the incentives nor
resources to publish about their anonymization practices. Still, using state-of-the-art privacy
techniques makes for good press, and the cost of writing a blog post is not high. Despite this,
in 2020, looking up differential privacy in a search engine still surfaces mostly academic
resources and use cases from large organizations.

There are a few exceptions, most of which are fairly recent. Some startups are using
differential privacy as a core part of their offering [19, 192, 241, 370], and a few efforts have
been initiated to implement differential privacy libraries and publish them as open-source
software [105, 173, 308, 356]. Even in those cases, the people behind those projects frequently
have an academic background: only organizations that can afford to hire or train domain
experts get to use differential privacy. This lag between theory and practice feels surprising:
as we showed in Section 2.1.6, the basic intuition behind DP is simple, and it seems easy
to generate differentially private statistics by combining simple mechanisms and using the
composition properties.

What are then the obstacles that prevent a wider adoption of differential privacy? In
this chapter, we present a number of results and insights from four years of working on
anonymization at a large company, in a role encompassing consulting, policy, and engineering.

First, we show that certain practical problems simply cannot be solved by applying differen-
tial privacy. In particular, this is the case for risk analysis, where the goal is not to make data
anonymous, but estimate “how risky” a given dataset is, under some risk models. Tackling this
class of problems can be the first step in a company’s journey towards stronger anonymization
practices: before deciding to implement better techniques for data sharing and retention, data
owners want to understand the risk associated with their existing practices. This setting will
force us to revisit syntactic privacy definitions presented in Section 2.1, since in cases where
we only have access to the output of a certain algorithm, without any information about the
algorithm itself, we cannot know whether it is differentially private.

157
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Second, we present a differentially private SQL engine, whose primary goal is to make it
easy for people—especially non-experts—to generate differentially private statistics. Safety,
scalability and usability are the three main requirements of this system. Taking our SQL engine
as an example, we explain how each of these requirements can be met. Safety considerations
require a thoughtful and realistic attacker model, going beyond the classical “untrusted analyst”
assumption from the scientific literature. Scalability is obtained via a massively parallelizable
design, which can be reproduced in other contexts than this SQL engine. To make the system
usable, we design an interface that mirrors the ones data analysts are already familiar with.
This requires the use of novel methods to remove roadblocks that classical differential privacy
mechanism would otherwise require.

Third, we raise a number of natural open questions which emerged as we were building
and rolling out this differentially private SQL engine, and partially answer them when
feasible. Some of these questions are about supporting a wider range of differentially private
aggregations, or about improving the utility of particularly crucial feature; in particular,
we present a novel algorithm to improve the utility of partition selection primitive. Other
questions are about operational aspects: how to choose anonymization parameters, and how
to provide helpful guidance for users of differential privacy tools?

Taken together, we hope that the insights gathered in this chapter can prove helpful to
current and future anonymization practitioners.

4.1 analyzing privacy risks at scale

We saw in Section 2.1.6 that differential privacy is a property of the mechanism, not of its
output. This core insight makes this definition ill-suited for an important class of problems
encountered in practice: risk analysis. Differential privacy can give strong guarantees about
the reidentifiability (or lack thereof) of some data, assuming the algorithm that output this
data was specifically built to be differentially private. What happens when that is not the case,
when the data we are interested in has already been generated? Is there a way to quantify, or
at least estimate, the reidentifiability risk?

This problem is of significant practical relevance. Large companies often have many
different datasets, whose number and size grows organically with the company and over time.
This raises a number of policy concerns: who should have access to what data, how long
should it be retained, etc. This is one of the roles of privacy engineers: they must take inventory
of existing data and make such policy decisions. Unfortunately, the need for comprehensive
and consistent data governance practices is often not understood until a certain amount of
organic growth has taken place, and manual efforts alone are costly and unlikely to succeed:
manual reviews requiring expert judgement do not scale. Privacy engineers need a way of
quantifying the risk associated with datasets, to help them prioritize which datasets to look at
first, and assist them in policy efforts.

Reidentifiability risk, which we mentioned above, is one such risk. Another one is join-
ability: is there an obvious way to join two datasets that are not supposed to be joined and
link the information of the same individual across their different identities? In this section, we
present a possible approach to tackling these problems, and analyzing datasets to detect high
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reidentifiability or joinability risks. Ironically, this approach is based on a novel sketching
algorithm, KHyperLogLog (KHLL), and relies on the same cardinality estimators that we
have shown in Section 3.3 not to be private.

Precisely quantifying these risks based only on the analysis of existing datasets (without
knowledge of how they have been generated) is impossible in general: our methods are
therefore heuristics. They are meant to serve as prioritization and detection tools, to assist
engineers in the difficult task of building and operationalizing a data governance program.

4.1.1 Introduction

Understanding and monitoring the privacy state of production systems is a crucial element of
privacy engineering. Data-flow analysis enables one to know which data processing workflows
are reading which data and generating which outputs. Static and dynamic code analyses help
to understand what binaries do at a more granular level e.g., whether they use pre-approved
APIs, whether they read or write sensitive data types, or whether they use safe defaults.
Potential violations of privacy policies can be surfaced during code review sessions, before
an engineer is allowed to run workflows in production systems.

However, while data flow analysis and code analysis are powerful tools, characterizing
the data to assess their sensitivity (such as we propose in this chapter) can often be useful or
necessary. While human reviewers often have good intuitions and context about the sensitivity
of data, there are obvious limitations: humans may make mistakes, and are limited in how
much they can review. An automated analysis system, on the other hand, can be accurate
and scalable. Where humans would have to settle for evaluating a system or dataset once,
automated systems can be re-run. This provides regression testing for privacy characteristics
and enables data custodians to be confident about the properties of their systems.

Automatic evaluation becomes challenging as dataset size increases and as data becomes
increasingly heterogeneous. While brute force approaches could work for smaller datasets,
their runtime and memory requirements become unworkable when run on petabytes of data.

4.1.1.1 Reidentifiability and joinability

We identify two characteristics of datasets that are often useful during privacy impact assess-
ments: reidentifiability and joinability, and we develop a new, scalable, automated approach
to measuring them. While these terms may have different connotations, we define them below,
and use them consistently throughout this work.

Reidentifiability is the potential risk that the identity of some users can be recovered in
some pseudonymous datasets. A good practice is to keep such reidentifiable datasets guarded
with strict access control and access audit trails. As companies collect more information
to build useful services it can be difficult to manually determine when a dataset becomes
reidentifiable and requires more careful handling. The ability to estimate the reidentifiability
of datasets automatically and efficiently reduces the work required of data custodians to
manually label the different datasets.

Joinability measures whether datasets are linkable by unexpected join keys. Sometimes it
is necessary to retain multiple datasets with different ID spaces. In those cases data custodians
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should avoid linking the two datasets to respect the choices of users who maintain separate
identities. As an example, consider a website that can be used either signed-in or signed-out. A
user may choose to use the website while signed-out to separate activities from their signed-in
identity. If the website operator maintains datasets about activities of both signed-in and
signed-out users, it might accidentally include granular information (e.g. web browser user
agent) in both datasets that could allow the signed-in and signed-out identities to be linked. In
that case, we would say that the identities in the two datasets are joinable.

Some syntactic privacy definitions we listed in Chapter 2, like k-anonymity or k-map,
suggest a possible approach to quantifying reidentifiability: for each characteristic, we could
quantify the total number of people associated to the same point. Similarly, taking the simplest
approach to joinability, we could say that two datasets are joinable if there exists a pair of
data fields, similar in content, that can serve as a join key. To measure this similarity between
fields, or measure when the values of a field are a subset of the values of another field (a
notion we call containment later), using the Jaccard index is a popular option [55, 205].

However, managing reidentifiability and joinability risks at scale is more challenging
than it appears. The naive approach requires memory proportional to the size of the dataset,
which becomes extremely difficult as dataset sizes climb into the petabytes. Our experiments
reveal how costly this naive approach is even for datasets in the order of gigabytes (see
Section 4.1.4.1). Linear runtime and sublinear memory are necessary for large-scale data
analysis.

4.1.1.2 Contributions

We present the KHyperLogLog (KHLL) algorithm and demonstrate how it can be used
to efficiently characterize both the reidentifiability and joinability of very large datasets.
Adapted from the field of cardinality estimation, KHLL produces quantitative measures for
reidentifiability and joinability using only a single pass over the dataset and minimal memory.
Both reidentifiability and joinability of datasets can be estimated using the compact data
structures (colloquially known as “sketches”) of KHLL rather than raw data. In addition, the
approach is format-agnostic, allowing it to analyze any dataset without modification. We
have validated that KHLL is fast, parallelizable and accurate on both proprietary and public
datasets.

KHLL can be used in a wide range of applications.

Quantitative measurement

KHLL can be used to quantitatively measure the reidentifiability risk of a dataset, or a fraction
of its columns. More precisely, it can be used to calculate the uniqueness distribution of
an arbitrary combination of columns with respect to a user identifier. This can inform data
custodians about the sensitivity of data and its risks so they can plan a suitable and appropriate
data strategy (e.g., access controls, audit trails, or stronger anonymization) at points in the life
cycle of the data, including data collection, usage, sharing, retention, or deletion.
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Exploring data strategies

The efficiency of KHLL provides data custodians a powerful analysis tool for exploring
different data sanitization strategies. Many data analysis tasks (e.g., experimentation to
improve service availability, anti-spam and fraud detection) can use a projection (view) of a
high-dimensional dataset that is protected with k-anonymity. KHLL can be run on different
possible combinations of columns in the dataset at once to estimate how much data will be
lost as a function of the technique. Together, the data custodian and data analysts can decide
how to trade off the utility of the data projection and the reidentifiability risk: which columns
should be included, suppressed, generalized or made disjoint in separate datasets, and whether
the data needs stronger guarantees like differential privacy.

Consider the Netflix prize dataset, which contains the movie ids and ratings given by
different users at different dates (year, month and day). Analyzing the dataset using KHLL,
we obtain results that mirror those of Narayanan and Shmatikov [294]. While no single
column has high uniqueness (e.g., we observe that all movies included in the dataset are
rated by at least 50 users), the combination of movie ratings and dates are highly unique. An
efficient analysis using KHLL might have helped the Netflix team measure the reidentifiability
risks, explore alternatives for treating the data, or to potentially conclude that the risk was too
high to share the data externally.

Regression testing

In cases where data custodians regularly produce k-anonymous (or the like) datasets, KHLL
can be further used as a regression test. KHLL analysis can be run on the output as part of the
anonymization pipeline to expose any implementation bugs, or to alert on any unexpected
changes to the characteristics of the input data.

Joinability assessment

KHLL can also enable efficient joinability assessment to protect user privacy. If an organiza-
tion collects data about users under multiple ID spaces in different contexts (e.g., signed in
vs signed out), KHLL can be used to keep the IDs separate, respecting the choice of users
to conduct certain activities in certain contexts. For example, KHLL analysis can be run on
two datasets of different IDs, and be used to detect data columns in the two datasets that
are similar (high containment in either direction) and that are highly unique. These data
columns are potential join keys that can be used to trivially link the two ID spaces. To mitigate
joinability risks, engineers can choose to suppress or generalize one of the columns, or use
access controls to prevent someone from using the columns to join the two identifiers. The
analysis can be run periodically and attached to an alerting system that notifies engineers
if joinability exceeds pre-specified limits (e.g., to quickly detect whether any newly added
columns increase joinability risks). Joinability assessment is highly intractable with pairwise
comparisons of raw data, but KHLL enables joinability approximation based on its compact
data structures (sketches).

Periodic KHLL-based joinability analyses have enabled us to uncover multiple logging
mistakes that we were able to quickly resolve. One instance was the exact position of the
volume slider on a media player, which was mistakenly stored as a 64-bit floating-point
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number. Such a high entropy value would potentially increase the joinability risk between
signed-in and signed-out identifiers. We were able to mitigate the risk by greatly reducing
the precision of the value we logged. In other cases, we have mitigated joinability risks by
dropping certain columns entirely, or by ensuring that the access control lists of both datasets
are disjoint.

Miscellaneous

If data custodians label their datasets with information about the semantics of certain columns,
KHLL can be used to propagate labels through the system and find inconsistencies. If two
columns have a high containment score (in either direction), they are likely to share the same
semantics. If one of the columns is labelled but the other is not, then the label can be copied
to the second column, and if the two columns have different labels then engineers can be
alerted that one of the labels is likely incorrect. The scalability of KHLL means that it can be
used to propagate labels across large datasets, and that the label correctness can be repeatedly
checked by re-running analysis periodically.

Although not a primary purpose, an additional side effect of making a powerful analysis
tool available to different roles in an organization is the increased awareness of anonymization
and user privacy. Data custodians, engineers and analysts can discuss the analysis results with
each other, gain a better understanding of reidentifiability risks when working with user data,
and understand why further anonymization may be necessary.

For all of these use cases one needs to keep in mind the estimation errors of KHLL (see
Section 4.1.3.1 and Figure 4.1.3.2). It is possible that KHLL may underestimate reidentifi-
ability or joinability risks (e.g., KHLL might miss values that are unique to a single user).
In general, data custodians could use KHLL to estimate risks and impacts on data utility
when exploring an appropriate data protection and anonymization strategy, but then use exact
counting to execute the strategy. While the joinability analysis using KHLL might be sensitive
to data formats and transformations, the efficiency of KHLL makes it the best regression test
for data joinability that we are aware of.

Organization

The rest of this section is organized as follows. We start by describing the design goals and
challenges in Section 4.1.2. We then provide some background on cardinality estimation
and present our KHLL algorithm in Section 4.1.2.4. Next, we describe the use of KHLL for
reidentifiability and joinability analysis in Section 4.1.3. We evaluate the performance and
accuracy of KHLL empirically in Section 4.1.4, and we summarize our work and discuss
related and future work in Section 4.1.5.

4.1.2 Definitions and system design

In this section, we introduce definitions used throughout this section, present the scalability
requirements of our system, recall some useful building blocks from cardinality estimation,
and finally present our KHyperLogLog (KHLL) algorithm.
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4.1.2.1 Definitions

In this section, we define how we quantify reidentifiability and joinability. These metrics are
defined on individual columns and can be directly extended to any combinations of columns.

Recall that our main goal is to design an efficient approach for quantifying the reidentifia-
bility and joinability risks of large datasets. Specifically, it should help mitigate the risk of
mistakes by engineers (e.g., adding additional columns to datasets without realizing they are
overly unique or pose joinability risks) particularly as complex production systems evolve. We
assume that the users of our system want to measure the privacy risks of their datasets, and so
we do not defend against malicious users attempting to misuse our algorithm to under-report
the risks of their data.

Reidentifiability via uniqueness distribution

We consider datasets D ∈ D as a sequence of rows, where each row is a combination between
a user identifier (or user ID) id ∈ ID and multiple columns C1, C2, . . . We typically only
consider a single column C at a time: we index all possible user IDs ID = {idi} and values of
this column C =

{
c j

}
, and we associate a dataset D with the set of pairs

{
(idi, c j)

}
∈ ID×C

present in D. Furthermore, for a specific value c j, we denote by ID [c j] =
{
idi

∣∣∣ (idi, c j) ∈ D
}

the set of user IDs associated with this value in D. These notations, and the others introduced
throughout this section, are summarized on page xix.

Definition 75. The uniqueness of a column value c j with respect to ID is given by the
number of unique IDs associated with c j i.e.,

∣∣∣ID [c j]
∣∣∣.

Definition 76. The uniqueness distribution of C with respect to ID is estimated by the
histogram of the uniqueness of individual values in C in dataset D.

This definition is slightly different from k-anonymity (see Section 2.1.1). We saw that
k-anonymity counts the minimum number k of unique individuals (here, IDs) associated with
any value in C. Here, we keep the entire distribution of k values: this way, we can compute
the fraction of values in C with high reidentifiability risk, and thus the potential impact to the
data when one would like to protect the data with k-anonymity or its variants.

In practice, the uniqueness distribution can be skewed. A few values in C might appear
with high frequency while other values may pose high reidentifiability risks as they associate
with only a small number of user IDs.

As an example, imagine a log that contains the User Agent (UA) of users who visit a
site. UA is an HTTP header column which describes the application type, operating system,
software vendor and software version of an HTTP request. To gauge the reidentifiability of
UAs, one can estimate the uniqueness distribution by counting the number of unique IDs that
individual UA strings associate with. We expect a high percentage of raw UA strings to be
associated with only one or a few user IDs and thus reidentifying [135].

Joinability via containment

Let C1 and C2 represent the sets of values of two columns in datasets D1 and D2 respectively.
Let |C1| denote the number of unique values in C1, i.e., the cardinality of C1, and C1 ∩C2
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denote the set of values in both C1 and C2 (the intersection). We measure the joinability of
D1 and D2 through C1 and C2 using the containment metric.

Definition 77. The containment of C1 in C2 is the ratio between the number of unique values
of the intersection of C1 and C2, and the number of unique values in C1 i.e., |C1 ∩C2|/ |C1|.

Note that containment is similar to the Jaccard index [205], but it is asymmetric. Unlike
the Jaccard index which computes the ratio between the number of unique values in the
intersection of C1 and C2, and the union of C1 and C2, containment uses the number of
unique values in either C1 or C2 as the denominator. This difference is important when C1
and C2 differ in size. Indeed, imagine one dataset that contains a small subset of the users
from a larger dataset. The Jaccard index will always be small, and would not report joinability
risk even when all values of C1 are contained in C2.

4.1.2.2 Scalability requirements

While both uniqueness distribution and containment are easy to compute on small datasets,
the computation will need to scale to handle very large datasets. In addition to hosting user
content for digital services, organizations collect data for providing physical services (e.g.,
healthcare and location-based services), improving user experience and service availability,
and anti-spam and fraud detection purposes. The scale of data can be huge, both in terms of
the number of data columns and rows, and the number of databases.

It would be a Herculean task for human reviewers to manually oversee all product iterations
and changes to data strategies. In a similar fashion, individual well-intentioned groups of
engineers also find it hard to keep up with the increasingly large number of policy and
regulatory requirements.

An ideal system for measuring reidentifiability and joinability that is scalable will need
to use efficient and parallelizable algorithms. Also, as increasingly heterogeneous data is
collected and used it will need an approach agnostic to data types and formats to handle
datasets generated by different engineering teams.

4.1.2.3 Cardinality estimation basics

In this section, we re-introduce two cardinality estimation techniques mentioned in Section 3.3.
Recall that cardinality estimation is a technique to efficiently approximate the number of
distinct elements in a multiset [45, 152, 195], typically using a small amount of memory.
These algorithms use compact data structures, colloquially known as “sketches”, which can
summarize certain observable properties of the elements in the analyzed dataset. Sketching
algorithms have also been proposed to compute other statistics such as quantiles [214, 268]
and frequent values [65, 84, 281].

In addition to being memory efficient, cardinality estimation sketches support additional
operations such as merging (set union). Large-scale datasets are typically stored in multiple
machines (“shards”), as the entire dataset would not fit in a single machine. In such situations,
one can compute the cardinality of the entire dataset using a two-step approach: compute the
sketches of individual data shards, then merge all the sketches generated in step 1.
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In this section, we extend two cardinality estimation algorithms named K-Minimum-Values
(KMV) [45] and HyperLogLog (HLL) [152] to build KHLL.

K-Minimum-Values (KMV)

As implied by the name, KMV estimates the cardinality of a set by keeping the K smallest
hash values of its elements. The intuition behind KMV is as follows. Suppose there exists a
hash function that uniformly maps input values to its hash space. Note that this hash function
does not need to be a cryptographic hash function, and one-wayness is not required (i.e., it
does not matter if the hash function can be reversed in polynomial time). If one computes
the hash of each element in the analyzed dataset, one can expect those hashes to be evenly
distributed across the hash space. Then, one can estimate the cardinality of the analyzed
dataset by computing the density of the hashes (i.e., the average distance between any two
consecutive hashes) and dividing the hash space by the density. Since storing all the hashes can
incur a significant storage cost, one can store only the K smallest hash values and extrapolate
the density of the entire hash space.

As a concrete example, say there is a hash function whose outputs are evenly distributed in
the range [1, 1,000,000]. If K = 100, and the Kth smallest hash value is 1000, we can compute
the density by simply dividing the Kth smallest hash value by K, i.e., density = 1000/100 =
10. Extrapolating to the range of [1, 1,000,000], with the uniformity assumption but without
bias correction, one can roughly estimate the number of unique values as 1,000,000/10 =
100,000.

Computing set union using KMV sketches is straightforward. Given two KMV sketches,
S 1 and S 2, one can find the KMV sketch of the union of the two datasets by combining the
two sketches and retaining only the K smallest hashes.

KMV sketches are efficient to produce. It requires a single pass over the dataset, but
only a space complexity of O(K), as it consists of K unique hash values of fixed length.
The cardinality estimated by a KMV sketch has a relative standard error of 1√

K
with the

assumption that the hash space is large enough to keep hash collisions to a minimum. As a
concrete example, with K = 1024 and using a 64-bit uniformly distributed hashing function,
one can estimate the cardinality with a relative standard error of 3% and KMV sketch size of
8 KB.

HyperLogLog (HLL)

Instead of keeping the K smallest hash values, HLL further reduces the space requirement by
tracking the maximum number of trailing zeros of the hash values. The maximum number
of trailing zeros increases as more unique values are added to HLL given the uniformity
assumption of the hash function.

From the hash of an incoming value, HLL uses the first P bits to determine the bucket
number, and uses the remaining bits to count the number of trailing zeros. HLL keeps track
of the maximum number of trailing zeros at each of the M = 2P buckets. After processing all
values in the analyzed dataset, HLL estimates the cardinality of each bucket as 2mi , where
mi is the maximum number of trailing zeros seen in bucket i. Finally, HLL estimates the
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cardinality of the analyzed dataset by combining the cardinalities of individual buckets by
taking the harmonic mean.

HLL sketches are also efficient to compute (i.e., using a single pass over the analyzed
dataset) and provide cardinality estimates with a relative standard error of 1.04√

M
. Moreover, the

space complexity of a HLL sketch is O(M) since it consists of M counts of trailing zeros. As
a concrete example, with M=1024 and using a 64-bit uniformly distributed hashing function,
one can estimate the cardinality with a relative standard error of 3% and HLL sketch size of
768 B.

Heule et al. showed that HLL does not provide a good estimate for low cardinalities and
proposed HLL++ [195] to accommodate such datasets. HLL++ maintains two different
modes of sketches. When the cardinality is low, it remains in the sparse representation mode,
which keeps almost the entire hash values. When the list of hash values kept grows, HLL++

switches to the conventional HLL mode which has a fixed memory footprint. The sparse
representation allows HLL++ to use linear counting for estimating small cardinalities with
negligible error while also keeping the sketch size small.

4.1.2.4 KHyperLogLog (KHLL)

While cardinality estimators are helpful, they are limited in many ways for reidentifiability
and joinability analysis. While cardinality estimates can be used to estimate the average
uniqueness when the total unique IDs in the dataset is known, they do not estimate the
uniqueness distribution. The average alone can be misleading: the uniqueness distribution can
be skewed in practice. The uniqueness distribution is also useful to inform about various data
strategies, for example the feasibility of suppressing or generalizing a fraction of the unique
values. The distribution could not be naively estimated as we could not assume the datasets to
be structured in a way that every single row corresponds to a single user.

In this section, we present KHyperLogLog (KHLL), which builds on KMV and HLL to
estimate uniqueness distribution and containment with a single pass over the dataset and low
memory requirements. The core insight is to use a two-level data structure for analyzing tuples
of column and ID values. KHLL contains K HLL sketches corresponding to K smallest hashes
of column values. This is approximately equivalent to taking a uniform random sampling of
size K over the column values. Each hash of column value comes with a corresponding HLL
sketch, containing the hashes of IDs associated with the corresponding column value.

Consider a stream of pairs (idi, c j) ∈ ID×C and a hash function h. KHLL processes the
incoming tuples as follows:

1. Calculate h (c j) and h (idi).

2. If h (c j) is already present in the KHLL sketch, add h (idi) to the corresponding HLL
sketch.

3. Else, if h (c j) is among the K smallest hashes:

a) If there are more than K entries, purge the entry containing the largest hash of C.

b) Add a new entry containing h (c j) and a HLL sketch with h (idi).
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Figure 4.1: A stream of User Agent (UA) and ID tuples processed by an example KHLL sketches
with K = 3 and M = 8. When the tuple (UA-4, ID-6) is added, the entry with the largest
h (UA) = 00011000 and its companion HLL sketch is purged to give way to h (UA-4)
and a new HLL. Notice that the sketches HLL1 and HLL4 are in sparse representation,
while HLL2 is in the conventional table form.

4. Else, do nothing.

As a specific example, consider a stream of User Agent (UA) and ID value pairs. Further,
consider an 8-bit hash function and a KHLL sketch of K = 3 and M = 8. The KHLL
sketch contains at most 3 entries representing the 3 smallest values of h (UA) in the first
level, each with a HLL sketch in the second level which has at most 8 counting buckets. For
example, when the KHLL sketch processes the tuple (UA-4, ID-6) which hashes to (00000011,
00011010) as shown in Figure 4.1, the entry with with the largest h (UA) = 00011000 and
its companion HLL sketch is purged to give way to h (UA-4) and a new HLL.

The memory signature of a KHLL sketch depends on the parameters K and M as well
as the uniqueness distribution of the data. Similarly to HLL++ [195], we design the HLL
sketches in KHLL to start in the sparse representation mode which keeps a sparse list of the
ID hash values. Once this representation exceeds the fixed size of a conventional HLL, it is
converted to a normal representation with M counting buckets. Using a 64-bit hash function,
individual counting buckets require less than a byte to count the maximum number of trailing
zeros in the ID hash values.

Recall that ID [c j] =
{
idi

∣∣∣ (idi, c j) ∈ D
}

is the set of user IDs associated with a given col-
umn value c j in dataset D. The memory needed for a KHLL sketch considering both the sparse
and conventional mode is thus min

(
8
∣∣∣ID [c j]

∣∣∣ , M
)

in bytes. Since the KMV approximates a
K size uniform random sample over column values, the expected memory usage for the entire
KHLL will be roughly K times the average HLL size i.e., K

|C|
·
∑
i

min
(
8
∣∣∣ID [c j]

∣∣∣ , M
)
.

This means that the memory usage of KHLL, while never above a strict upper bound, will
be higher for datasets with low uniqueness in which most column values are associated with
large user ID sets. Alternatively, when most column values correspond to only a few unique
user IDs, the memory signature will be much smaller as the HLL sketches will be in sparse
representations.

Note that KHLL does not dictate how the data is structured. To process a table of data,
we simply read each row in the table, extract the ID value and the values of columns (or
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Figure 4.2: Example uniqueness histogram (fake data, for illustration purposes only). We expect
User Agent (UA) to have a uniqueness distribution where a majority of UA strings are
associated with only one or a few unique IDs.
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Figure 4.3: Two possible shapes for cumulative uniqueness distributions (fake data, for illustration
purposes only). The left has low uniqueness, while the right contains values that are highly
unique.

combinations of columns) of interest, and ingest the tuples of ID and column values into the
corresponding KHLL sketches. This allows for tables that contain arbitrarily large number of
columns, and even for tables where data about the same user can be repeated across multiple
table rows.



4.1 analyzing privacy risks at scale 169

During the design and implementation of KHLL, we considered an alternative two-level
KMV-based data structure. The high level idea is to store a KMV sketch of values, like
KHLL, but to also use KMV in the second level instead of HLL. We named this K2MV
given the two-level data structure of minimum hash values. To improve the performance,
we implemented this as a single table storing all hash values instead of in multiple KMV
stores. The size of the table is governed by parameters K1, K2, corresponding to the number
of hashes stored at each level. We used an amortized strategy, where hash values are stored in
sorted order, and where new hash values are written to a buffer which is periodically merged
into the sorted list. We ran experiments and concluded that KHLL was more memory-efficient
and suitable for our needs.

4.1.3 Estimating reidentifiability and joinability using KHLL

In this section, we explain how to use KHLL, presented in Section 4.1.2.4, to estimate
reidentifiability and joinability, as defined in Section 4.1.2.1.

4.1.3.1 Reidentifiability

From a KHLL sketch of (C,ID), one can estimate both the cardinality of the column and
the number of unique IDs associated with individual column values i.e., the uniqueness
distribution. The latter allows us to efficiently estimate the proportion of column values that
are reidentifying as well as statistics such as the min, max, and median uniqueness.

Evaluating the trade-off between data loss and reidentifiability

One can plot the uniqueness distribution to visualize the percentage of column values or IDs
meeting some k-anonymity thresholds. Figure 4.2 is an example histogram of how many
column values are associated with each number of unique IDs. Tweaked slightly, Figure 4.3
plots the cumulative percentage of values not meeting varying k-anonymity thresholds. A
“more anonymous” dataset exhibits the curve on the left as most of the column values are
expected to be associated with a large number of IDs. Conversely, a highly reidentifying
dataset will exhibit the curve on the right.

The cumulative distribution is particularly useful as it estimates how much data will be
lost when applying a k-anonymity threshold. This allows one to determine a threshold that
preserves some data utility while ensuring a reasonable privacy protection, especially when
other risk mitigation measures are in place such as access control, audit trails, limited data
lifetime or noising of released statistics. We can see that for the left curve, one can choose a
high threshold with low data loss, while on the right even a moderate threshold will result in
dropping a large portion of the dataset.

Given the efficiency of KHLL analysis, one could set up periodic analyses to assure that
the uniqueness distribution does not change over time, to monitor, for example, that no more
than X% of values should have less than k-anonymity.

In addition to analyzing the uniqueness distribution of individual columns, KHLL can
be used to analyze any combinations of columns, including a complete row. This can be
done, for example, by simply concatenating the values of multiple columns, and treating
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the combination as a new column. The reidentifiability risk will grow as the number of
dimensions increases. For example with movie recommendations, the combination of movie
name, rating and date of recommendation can be highly unique [294].

Limitations and mitigations

Using a KHLL sketching algorithm with K = 2048 and 512 HLL buckets would give us an
estimated error rate of 2% for the value cardinality and about 4% error rate for ID cardinalities.
A higher error rate of ID cardinality estimates is tolerable given that we are more concerned
about column values that associate with low number of IDs. In those cases, the algorithm will
use HLL++ in sparse representation mode, which gives good estimates with minimal errors.
Note that the trade-off between accuracy and efficiency is configurable.

Meanwhile, as a KHLL sketch effectively maintains K uniform random samples of column
values, the estimated distribution does come with sampling bias. Specifically, it is possible
that the estimated distribution may miss some outlier column values that associate with a
large or small number of IDs. One mitigation is to run multiple analyses using different hash
functions (with random seeds) to reduce the chance of outliers being consistently left out of
the analysis.

4.1.3.2 Joinability
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Figure 4.4: Example illustration of joinability between Personally Identifiable Information (PII) and
pseudonymous IDs, with raw User Agent (UA) strings being the join key.

Estimating the joinability of two datasets through a pair of columns say C1 and C2 from
their KHLL sketches is also straightforward. Recall that containment of C1 in C2 is given
by |C1 ∩C2|/ |C2|. To compute this, we need only the cardinality of C1 and C2, plus the
cardinality of their intersection.

Using the inclusion-exclusion principle, we estimate |C1 ∩C2| = |C1|+ |C2| − |C1 ∪C2|.
The union of C1 and C2 can be easily estimated by merging the KHLL sketch of C1 and that
of C2. An alternative approach for computing the set intersection is by identifying the hash
values that exist in both the KHLL sketches of C1 and C2 and computing the minmax of the
K smallest hashes on both sides. This would allow us to quantify the error rate of individual
set intersections directly, but the error rate will vary as the minmax of the hashes will vary for
different pairs of columns. We prefer the simpler inclusion-exclusion-based approach.
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In addition to determining the joinability of columns, KHLL sketches can provide insights
into the potential joinability of identities in two datasets. For example, pseudonymous IDs
in one dataset could be reidentified if the dataset is joinable with another dataset contain-
ing Personally Identifiable Information (PII), and if the join keys are associated with one
pseudonymous ID and PII respectively (see Figure 4.4).

Specifically, given a pair of sketches of two columns C1 and C2 in datasets D1 and D2
respectively, we could estimate:

• whether C1 is highly contained in C2 or vice-vers;

• whether C1 uniquely identifies ID1 in D1;

• whether C2 uniquely identifies ID2 in D2.

KHLL allows us to estimate all the above conditions. Specifically, the first level of KHLL
which is essentially a KMV sketch can be used to estimate the cardinality of C1 and C2, the
cardinality of the intersection, and thus containment. Meanwhile, the second level of KHLL,
consisting of HLL sketches, gives the uniqueness distribution and thus the ratio of uniquely
identifying values easily.

Practical considerations for joinability analysis
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Figure 4.5: Two-step approach of reidentifiability and joinability analysis: (i) distributed scanners
read various datasets to produce a KHLL sketch for every C × ID tuple, (ii) various stats
(including pairwise containment of datasets) are computed offline based on the sketches
(rather than by comparing the raw datasets).

Estimating the joinability of large datasets is a hard problem. Naively estimating the
pairwise joinability of datasets involves a quadratic number of full-table scans. The number
of scans needed can increase quickly, especially for large datasets with many data columns.

However, as shown in Figure 4.5, KHLL allows us to estimate joinability from the sketches
alone. This is a huge saving: it allows us to scan each dataset only once, and then pairwise
compare the sketches rather than original datasets.
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The sketching process can be agnostic to the underlying data when the schema of the
datasets are well defined. For example when using protocol buffer messages [323] we can
analyze new datasets without any need to configure information about columns, especially
when the semantic types of data columns are properly annotated [341].

The sketching process can also be distributed. The respective data owners do not need to
grant a central service access to the raw data, but simply to agree on the sketching method
and to upload the sketches to a central repository. The sketches containing the hash values
of potentially sensitive data including user IDs should still be treated with care such as by
limiting the access and ensuring a short lifetime.

Limitations and mitigations

Using sketches for joinability analysis comes with some risks, both of reporting columns
are potential join keys even though they do not present an actual risk of joinability, and of
missing potential join keys.

First, note that the containment metric is agnostic to the semantics of the underlying data.
Specifically, containment (or Jaccard) does not distinguish between columns that use a similar
range of values but are semantically different. As an example, we could falsely determine
port_number and seconds_till_midnight columns to be joinable since they both have
an extensive overlap in the integer range of [0, 86400): this can induce false positives. The rate
of false positives can be mitigated by requiring a large cardinality threshold on the potential
join keys.

Second, false negatives are also possible, and can arise for multiple reasons. For example,
the containment metric will fail to detect similar columns that have been encoded differ-
ently (e.g., base64 versus raw string) or have undergone some slight transformations (e.g., a
microsecond timestamp versus the coarsened millisecond version). This is a hard problem
in practice. The system could potentially support some common transformations or encod-
ings when the semantic type of a data column is known, but there is no way to handle all
possibilities.

The containment metric can also be unreliable when set sizes are highly skewed. When the
expected error rate of a set is larger than the cardinality of a much smaller set, the estimate
for the set intersection computed using the inclusion- exclusion principle will be unreliable.
One could potentially complement the containment metric with some other similarity scores
like the similarity between the frequency distribution of the potential join keys.

Importantly, while KHLL can evaluate the pairwise joinability of datasets based on in-
dividual columns, estimating the joinability of datasets through arbitrary combinations of
columns remains practically infeasible given that intractable number of potential column
combinations. One could however systematically approach this by testing the joinability
between combinations of high-risk columns, for example, involving only those that have high
uniqueness.

Finally, pairwise joinability analysis does not readily detect multi-hop joinability. For
example, when a dataset D1 is joinable with dataset D2, and D2 is joinable with dataset
D3 through two different pairs of join keys, we will not detect that D1 is joinable to D3.
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Such multi-hop joinability analysis could be similarly estimated using clustering and graph
traversal algorithms such as label propagation [412].

4.1.4 Experimental validation

In this section, we validate the efficiency and accuracy of KHLL experimentally. Efficiency is
validated in a production environment, so the experimental results provided are as realistic as
possible. To provide reproducible validation results about accuracy, we have implemented a
version of the KHLL algorithm in BigQuery Standard SQL, and simulated the computation
of uniqueness distribution and joinability using publicly available datasets. The code for the
experiments can likely be adapted for other SQL engines, and is shared on GitHub [143].

4.1.4.1 Efficiency

The KHLL algorithm and the metrics we estimate with it have been implemented in a
proprietary production environment in Go using the MapReduce programming model [95].
For each column (or specified combinations of columns) in the dataset, the MapReduce
outputs a KHLL sketch in one pass.

To reason about efficiency, we implemented two naive MapReduce algorithms. The first
one, Count Exact (CE), computes the exact variants of the metrics that KHLL estimates. The
second one, Count Exact Single (CES), computes the same set of metrics exactly, but analyzes
only one single column during a given MapReduce run.

We designed the CE MapReduce to output, for each column, a dictionary of column values
to ID sets (allowing the computation of various statistics that a KHLL sketch approximates).
One would expect that emitting the entire column-value-to-ID-set dictionary would result in
substantial memory overhead. The CES MapReduce is a more realistic simplification of CE
which outputs the tuples of column values and ID sets of only one single specific column.

The test dataset on which we ran our performance analyses represents the data-flow graph
of various production operations at Google. Each row in this dataset represents a node in the
data-flow graph and has about 50 data columns describing the properties of the operations as
well as the input and output data. One of the data columns specifies the globally unique name
of the machine where the operation is run or controlled. We used this machine name as the
ID column in our analyses. Note that this dataset does not contain any user data and is not
privacy sensitive as these are not necessary for performance measurements.

We ran KHLL, CE and CES on several subsets of the test dataset in a shared computational
cluster at Google. These analyses were provided computational resources at a priority class
that is typically used for batch jobs. Measuring the performance metrics of jobs in a shared
computational cluster is not straightforward since any given machine can host multiple unre-
lated jobs with varying priority classes that can consume machine resources in unpredictable
ways. So we focused on the performance metrics which a typical customer of a commercial
computational cluster (e.g., Amazon EC2, Google GCE) would pay for.

Table 4.1 shows the performance metrics of the MapReduce runs. As one can see, KHLL
is consistently more efficient than CE across various metrics. Performance differs by 1 or 2
orders of magnitude even for the relatively small datasets in our experiment. In fact, the CE
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MapReduce type Input size Algorithm CPU usage (vCPUs) RAM usage (GBs) Peak RAM (GB) Output size (GB) Runtime (s)

All columns

1 GB
CE 4.01e+3 1.14e+4 9.34e+0 1.04e+0 5.83e+2

KHLL 9.78e+2 2.08e+3 9.45e-1 1.60e-3 1.43e+2

100 GB
CE 3.53e+5 3.40e+6 1.10e+2 2.64e+0 1.93e+4

KHLL 6.25e+4 3.11e+4 2.00e+0 3.46e-3 2.63e+2

1 TB
CE (n.a.) (n.a.) (n.a.) (n.a.) (n.a.)

KHLL 9.92e+5 2.37e+6 2.52e+0 3.50e-3 1.13e+4

Single column
1 GB CES 7.23e+2 4.76e+3 8.07e-1 1.57e-2 5.76e+2

100 GB CES 4.47e+4 1.30e+5 1.79e+0 2.35e-1 1.10e+3

Table 4.1: Performance metrics of KHLL and exact counting algorithms. We configured KHLL to
have K=2048 and M=1024. 1 GBs = 1 GB of RAM used for 1 second. Virtual CPU
(vCPU) is a platform-neutral measurement for CPU resources. 1 vCPUs = 1 vCPU used
for 1 second. The CE MapReduce for analyzing all data columns in a 1 TB dataset was
excessively expensive and was halted.

MapReduce jobs for analyzing all data columns in an 1 TB dataset became too expensive to
be completed in the shared computational cluster. Interestingly, per our test dataset, it is even
more memory efficient (though slightly slower) to compute the KHLL sketches of all data
columns in a single MapReduce run, than to analyze a single data column using CES. This
performance disparity is critical in practice, as it is the difference between an analysis that is
feasible to run, and one that is too slow to be worthwhile.

In various production setups at Google, KHLL scales to analyze hundreds of datasets, each
containing potentially trillions of rows and tens of thousands of data columns measuring
petabytes in sizes, to produce millions of sketches in each run.

4.1.4.2 Accuracy of uniqueness distribution estimation

We measured the accuracy of the estimated uniqueness distribution using three publicly
available datasets. The first two are taken from the Netflix Prize dataset which was released in
2006 and shown to be reidentifying for a significant fraction of the users [294]. We estimate
the uniqueness distribution of (a) movies, and (b) tuples of movie and date. Note that we do
not consider the entire list of movies (or respectively all pairs of movie and date) associated
with individual pseudo-identifiers. We could analyze this easily but it will be less interesting
for our validation purposes, as most of the values will be unique. The third dataset is the 2010
US Census [96] through which we count the number of distinct individuals associated with a
given (ZIP code, age) tuple. The corresponding uniqueness distribution gives an indication of
the reidentifiability of these quasi-identifiers within the US population. As we will see, the
three datasets present different uniqueness profiles, allowing us to test the accuracy of KHLL
estimation in different situations.

We simulate the KHLL algorithm, with parameters K = 2048 and M = 1024. We learned
from our production settings that K = 2048 gives a good trade-off between precision and
memory usage. M = 1048 was chosen as the smallest possible parameter of the HLL++

library available in BigQuery Standard SQL. We use M = 512 in our production pipelines,
which gives a comparable degree of precision in ID cardinality estimation (4% vs. 3%). As
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HLL++ counts elements exactly at lower cardinalities, this has a negligible influence on our
estimations. For each dataset, we compare the KHLL-based estimate to the true distribution,
which is computed exactly (without approximation) using standard SQL operators.

Figure 4.6a plots the cumulative uniqueness distribution of movies in the Netflix Prize
dataset. It allows an analyst to quickly answer the question: how much data do we lose if we
only release the movies which have been rated by more than k users, for all possible values
of k. The uniqueness of movies is low: the median number of associated users per movie
is larger than 500. Figure 4.6b plots the cumulative uniqueness distribution of the tuples of
movie and date. The typical uniqueness of this setting is high: over 80% of the (movie, date)
tuples are associated with 10 or less unique IDs.

Figure 4.6c shows the cumulative uniqueness distribution of tuples (ZIP code, age) in the
US census. Each individual in the census dataset appears in only a single row, different from
the case with Netflix datasets where ratings from the same user exist on several separate
records. The uniqueness of (ZIP code, age) tuples is variable: a significant portion of possible
values is associated to only a few individuals, but many of the (ZIP code, age) tuples associate
with larger than 100 individuals.

Across all three experiments, we observe that the estimate of uniqueness distribution using
KHLL is accurate.

4.1.4.3 Accuracy of joinability and containment estimation

As described in Section 4.1.3.2, joinability is most interesting from the privacy perspective
when a pseudonymous ID space becomes joinable with PII. Specifically if columns C1
and C2 are joinable, and that C1 uniquely identifies a pseudonymous ID space while C2
uniquely identifies PII. Three conditions are important for estimating such risk: the ratio of
C1 values uniquely identifying ID1, the ratio of C2 values uniquely identifying ID2, and
the containment of C1 in C2 (or containment of C2 in C1).

The estimate of ratio of column values uniquely identifying an ID can be seen as an
estimator of the parameter p based on an observation of a binomial distribution of parameters
K and p. It is well-known that a binomial distribution of parameters K and p has a variance of
p(1− p)K, so the estimator which divides the result of the distribution by K has a variance of
p(1− p)/K, or a standard distribution of

√
p(1 − p)/K. Therefore, we focus our experiments

on estimating the containment metric, as defined in Definition 77.
Using K = 2048 hashes, and assuming C1 and C2 have the same cardinality, the estimate

of containment falls within ±5% of the true value over 90% of the time, and always stays
within 10% of the true value. This is true regardless of the cardinality of the intersection
of C1 and C2. Figure 4.7 shows the median as well as the 5th and 95th percentiles of the
containment estimation, for cardinalities of 10,000 and 10,000,000.

When C1 and C2 have different cardinalities, however, precision can suffer. Figure 4.8
shows the median as well as the 5th and 95th percentiles of the estimation of |C1 ∩C2|/ |C1|,
where true value is fixed at 50%, |C1| = 100,000, and |C2| varies between 50,000 and
2,000,000 (so, the cardinality ratio |C2|/ |C1| ranges from 0.5 to 20).

We can observe that the larger the cardinality ratio gets, the worse the precision becomes.
This is expected: since we compute |C1 ∩C2| using the inclusion-exclusion principle, and
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(c) US Census: ZIP code and age

Figure 4.6: Estimation of uniqueness distribution in different datasets using KHLL as compared to
true distribution (computed exactly without approximation).

the error of the estimation is proportional to the cardinality estimated, the estimation error
of |C1 ∩C2| should be roughly proportional to max (|C1| , |C2|). Since the value of |C1 ∩C2|

is roughly proportional to min (|C1| , |C2|), the error ratio of the containment estimation will
grow linearly with the cardinality ratio. This is what we observe in practice.

4.1.5 Summary and perspectives

The scale of data and systems in large organizations demands an efficient approach for
reidentifiability and joinability analysis. KHyperLogLog (KHLL) innovates on approximate
counting techniques to estimate the uniqueness distribution and pairwise containment of very
large databases at scale.
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Figure 4.7: Estimation of containment with fixed cardinalities. The bars indicate the 95th and 5th
percentiles of the estimates.

0 5 10 15 20
0

20

40

60

80

100

Cardinality ratio

E
st

im
at

ed
co

nt
ai

nm
en

t(
%

)

Figure 4.8: Estimation of containment with varying cardinality ratio. The true containment is 50%.
The bars indicate the 95th and 5th percentiles of the estimates.

The efficiency and scalability of risk analysis using KHLL represent a practical and useful
tool for large organizations in protecting user privacy. It provides an objective, quantifiable
and replicable measure of reidentifability of datasets. The KHLL algorithm also presents a
novel and practical approach for tackling the joinability risks of datasets and ID spaces. The
efficiency of KHLL further enables periodic analyses of complex production systems that
evolve over time.

4.1.5.1 Related work

Using the frequency of (combinations of) column values as a proxy to measure reidentifiability
is not new: this is the core intuition behind k-anonymity, which we introduced in Section 2.1.1.
Rather than just estimating k-anonymity, the KHLL algorithm estimates the entire uniqueness
distribution, which is useful for evaluating the impact to data loss with k-anonymization. The
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reidentifiability and joinability risks as estimated using KHLL can serve to help determine a
suitable anonymization strategy, particularly when considering the different contexts and use
cases of anonymization.

The problem of gathering metadata and organizing datasets in large organizations has
been described on several occasions. In [183], the authors detail a search engine for datasets,
which gathers metadata at dataset level; while in [342], the authors explain how to detect and
propagate column-level semantic annotations using assisted labeling and data-flow analysis.
The tools we develop to automatically detect joinability of datasets could be used for a
similar purpose. Inconsistent semantic annotations between data columns with high similarity
scores (containment or Jaccard) can be automatically detected with the correct annotations
propagated accordingly.

Cardinality estimators have been the subject of a significant body of research [45, 152,
195, 394]. The techniques we propose are largely independent of the particular algorithm
chosen to approximate ID cardinality. Beyond privacy, estimating value distribution is also
essential to database query optimization and data stream processing. Most research in this
domain focuses on sketching values of high frequency (i.e. statistical heavy hitters or top-k
queries). The closest analogue of KHLL was presented by Cormode et al. [86]; it combines
the Count-Min sketch [85] and the LogLog sketch [153] for value distribution estimation.
However, the Count-Min algorithm biases towards values of high frequency, which is not
helpful for evaluating the impact of k-anonymity given the typical choices of k are much
smaller than the frequency of heavy hitters.

MinHash [55] and SimHash [66] are two popular algorithms for estimating the Jaccard
similarity of datasets. The KHLL algorithm leverages the K Minimum Values in the first
level of the two-level sketch for estimating Jaccard and containment scores, using a similar
log n-space memory footprint. A possible improvement might be to adapt from HyperMin-
Hash [402], capable of estimating Jaccard using only log log n-space. Yet, given that the bulk
of memory usage by KHLL actually comes from the second level of the sketch for estimating
the uniqueness distribution, we have not explored the feasibility of adapting KHLL to have a
HyperMinHash-like data structure in the first level.

Finally, despite the extensive research for detecting data similarity, we have not seen any
prior work tackling the problem of automatically detecting possible joinability between
different ID spaces across datasets.

4.1.5.2 Future work

While KHyperLogLog is memory efficient, it still requires a linear pass over the data, which
in practice is the main performance bottleneck. Techniques to produce sketches suitable
for joinability analysis without scanning the entire dataset would be helpful, for example
by sampling input records. It would also be interesting to pursue further innovative uses
of cardinality estimation techniques in privacy enhancing technologies, for example for
automatically adding semantic labels to datasets, detecting violations of retention policies, or
for suggesting effective anonymization strategies.
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4.2 building a usable differentially private query engine

In the previous section, we saw that risk analysis use cases, where datasets are generated
via an unknown process and we are trying to quantify their risk, cannot be easily tackled
with mechanism-centric definitions like differential privacy. This is only a partial answer to
the original question of this chapter: for all cases where we can control the data generation
process, why is differential privacy not more widely used? Since its introduction, differentially
private variants have been proposed for most common data analysis tasks: from simple
aggregations, like counts [128], sums, or medians [127, 303], to more complex analyses, like
k-means clustering [303] or empirical risk minimization [71]. Yet, real-world deployments of
such algorithms seem to be few and far between.

In this section, we argue that one of the main reasons for this state of affairs is usability. On
paper, differential privacy is relatively simple, but in practice, few implementations are readily
available, and few people will go through the trouble of implementing an algorithm from a
scientific paper by themselves. The lack of existing implementations is partially explained
by a misalignment of incentives: academics get more recognition and career progress out of
scientific papers than usable open-source software. But this is only a partial explanation: it
is also surprisingly difficult to convert algorithms from the scientific literature into a usable,
scalable, and solid implementation.

The potential issues are numerous. Basic primitives such as noise addition are often
modeled using continuous numbers with infinite precision; and translating them naively to
finite computers using floating-point numbers can lead to significant vulnerabilities. Many
scientific papers make assumptions that are unrealistic in many practical use cases, like the
implicit premise that each user contributes a single data point to the input dataset, that the
aggregations happen along partitions that are known in advance, or that the input dataset
can fit entirely in memory. Production applications also require a high degree of trust in the
implementation, and it is non-trivial to adapt software reliability techniques like unit testing to
randomized algorithms. Further, a tool for differential privacy must be usable by non-experts,
and this requires to put significant thought into interface design.

In this section, we propose a generic and scalable framework to perform differentially
private aggregations on databases, and use it as an example to introduce possible approaches
to tackle the problems listed above. This framework, which we express as an operator in
relational algebra, provides differential privacy even when each individual can each be
associated with arbitrarily many records. To validate this system, we test the utility of typical
queries on industry benchmarks, and verify its correctness with a stochastic testing framework.
We highlight the benefits provided by such a query engine and the pitfalls encountered in
the course of its deployment. Finally, we publish one of its implementations as open-source
software.

4.2.1 Introduction

Query engines are a major analysis tool for data scientists, and one of the most common ways
for analysts to write queries is with Structured Query Language (SQL). As a result, multiple
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query engines have been developed to enable data analysis while enforcing DP [42, 209, 233,
273], and all of them use a SQL-like syntax.

However, as we discuss in Section 4.2.2, these differentially private query engines make
some implicit assumptions, notably that each individual in the underlying dataset is associated
with at most one dataset record. This does not hold in many real-world datasets, so the privacy
guarantee offered by these systems is weaker than advertised for those datasets. To overcome
this limitation, we introduce a generic mechanism for bounding user contributions to a large
class of differentially private aggregate functions. We then propose a design for a SQL engine
using these contribution bounding mechanisms to enforce DP, even when a given individual
can be associated with arbitrarily many records or when the query contains joins.

Our work goes beyond this design and accompanying analysis: we also describe the
implementation of these mechanisms as part of a SQL engine, and the challenges encountered
in the process. We describe the testing framework we use to increase our level of trust in
the system’s robustness. To aid in reproducing of our work and encourage wider adoption
of differential privacy, we release core components of the system, as well as a distinct
implementation of this framework, as open-source software.

4.2.1.1 Requirements and contributions

To be useful for non-expert analysts, a differentially private SQL engine must satisfy at least
the following requirements.

• It must make realistic assumptions about the data, specifically allowing multiple records
to be associated with an individual user.

• It must support typical data analysis operations, such as counts, sums, means, per-
centiles, etc.

• It must provide analysts with information about the accuracy of the queries returned by
the engine, and uphold clear privacy guarantees.

• It must provide a way to test the integrity of the engine and validate the engine’s privacy
claims.

In this work, we present a differentially private SQL engine that satisfies these requirements.
Our contributions are as follows.

• We detail how we use the concept of row ownership to enforce the original meaning
of differential privacy: the output of the analysis does not reveal anything about a
single individual. In our engine, multiple rows can be associated with the same “owner”
(hereafter referred to as a user, although the owner could also be a group), and the
differential privacy property is enforced at the user level.

• We implement common aggregations (counts, sums, medians, etc.), arbitrary per-record
transforms, and joins on the row owner column as part of our engine. To do so, we
provide a method of bounding query sensitivity and stability across transforms and
joins, and a mechanism to enforce row ownership throughout the query transformation.
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• We detail some of the usability challenges that arise when trying to use such a system
in production and increase its adoption. In particular, we explain how we communicate
the accuracy impact of differential privacy to analysts, and we experimentally verify
that the noise levels are acceptable in typical conditions. We also propose an algorithm
for automatic sensitivity determination.

• We present a testing framework to help verify that ε-DP aggregation functions are
correctly implemented, and can be used to detect software regressions that break the
privacy guarantees.

We hope that this work, and the associated open-source release, can increase the appropriate
adoption of differential privacy by providing a usable system based on popular tools used by
data analysts.

4.2.1.2 Related work

Multiple differentially private query engines have been proposed in the literature. In this
work, we mainly compare our system to two existing differentially private query engines:
PINQ [273] and Flex [209]. Our work differs in two major ways from these engines: we
support the common case where a single user is associated with multiple rows, and we support
arbitrary GROUP BY statements.

Another line of research focuses on building frameworks to define differentially private
algorithms: examples include are Airavat [334], Ektelo [404] and OpenDP’s programming
framework [156]. These are building blocks that help write correct differentially private
algorithms, but require significant changes in how programs are written, and we argue that
they cannot be used as is without prior expertise on differential privacy.

In these systems, a single organization is assumed to hold all the raw data. Query engines
can also be used in other contexts: differential privacy can be used in concert with secure
multiparty computation techniques to enable join queries between datasets held by different
organizations, systems such as DJoin [293] and Shrinkwrap [42] tackle this specific use case.

A significant amount of research focuses on improving the accuracy of query results while
still maintaining differential privacy. In this work, for clarity, we keep the description of
our system conceptually simple, and explicitly do not make use of techniques like smooth
sensitivity [303], tight privacy budget computation methods [213, 278], variants of the
differential privacy definition (Section 2.2), adjustment of noise levels to a pre-specified set
of queries [249], or generation of differentially private synthetic data to answer arbitrarily
many queries afterwards [49, 232, 233]. We revisit certain design choices and outline possible
improvements later, in Section 4.3.

The testing framework we introduce in Section 4.2.6.3 is similar to recent work in ver-
ification for differential privacy [47, 109, 167], and was developed independently. Other
approaches use semantic analysis, possibly augmented with automated proving techniques, to
certify that algorithms are differentially private [32, 33, 292].

Our work is not the first to use noise and thresholding to preserve privacy: this method
was originally proposed in [174, 230] in the specific context of releasing search logs with
(ε, δ)-DP; our work can be seen as an extension and generalization of this insight. Diffix [155]
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is another system using similar primitives; however, it does not provide any formal privacy
guarantee, and has been shown to be vulnerable to attacks [79, 80, 157], so a meaningful
comparison with our work is not feasible. In Section 4.2.4, we provide a comparison of query
accuracy between our work, PINQ, and Flex.

4.2.1.3 Preliminaries

We introduce here the definitions and notations used throughout this section, which are also
summarized on page xix. Because a significant part of this work specifically focuses on the
case where a single user contributes multiple records to the dataset, we no longer consider
a dataset as a sequence of records in T but as a sequence of rows, where each row is a pair
(id, t) ∈ ID×T : each row is a record associated with a specific user.

Definition 78 (Distance between datasets). We denote row-level change the addition or
removal of a single row from a dataset, and user-level change the addition or removal of
all rows associated with a user. Given two datasets D1 and D2, we denote ‖D1 − D2‖ the
minimum number of row-level changes necessary to transform D1 into D2, and ‖D1 − D2‖u
the minimum number of user-level changes necessary to transform D1 into D2; we call them
row-level distance and user-level distance respectively.

In the original definition of (ε, δ)-differential privacy, each user is implicitly assumed to
contribute a single record. Since we want to consider the case where this is not true, we define
two variants of differential privacy to make this distinction explicit.

Definition 79 ((ε, δ)-row-level and user-level differential privacy). A randomized mechanism
M satisfies row-level (ε, δ)-DP (respectively row-level (ε, δ)-DP) if for all pairs of datasets
D1, D2 ∈ D that satisfy ‖D1 − D2‖ = 1 (respectively ‖D1 − D2‖u = 1), M (D1) ≈ε,δ
M (D2).

As previously, ε-DP is an alias for (ε, 0)-DP, and ≈ε,δ denotes (ε, δ)-indistinguishability
(see Definition 14).

Note that this notion is technically unbounded differential privacy, defined in [227] and
mentioned in Section 2.2.3.1: we only allow neighboring datasets to differ in a row (or all
rows associated with a user) that has been added or removed, not changed. Up to a change
in parameters, it is equivalent to the classical definitions, but we found that this choice
significantly simplifies the analysis and the implementation of differential privacy tooling.

Finally, let us define L1-sensitivity, defined on functions that take a dataset as input and
return a vector in Rd , for some integer d.

Definition 80 (L1-Sensitivity). Let ‖·‖1 be the L1-norm on Rd . The global L1-sensitivity ∆ f
of a function f : D → Rd is the smallest number such that:∥∥∥ f (D1) − f (D2)

∥∥∥
1 ≤ ∆ f

for all D1 and D2 such that ‖D1 − D2‖ = 1. The user-global L1-sensitivity ∆u f of f is the
smallest number such that the above holds for all D1 and D2 such that ‖D1 − D2‖u = 1.
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4.2.2 A simple example: histograms

Before describing the technical details of our system, let us first give an intuition of how it
works using a simple example: histogram queries. Consider a simple dataset that logs accesses
to a given website. An analyst wants to know which browser agents are most commonly used
among users visiting the page. A typical query to do so is presented in Listing 4.1.

SELECT
browser_agent ,

COUNT(*) AS visits
FROM access_logs
GROUP BY browser_agent

Listing 4.1: Simple histogram query

How would one make this simple operation ε-differentially private? One naive approach is
to add Laplace noise of scale 1/ε to each count, as described in Section 2.1.6.4. Unfortunately,
this solution suffers from several shortcomings.

4.2.2.1 First pitfall: multiple contributions within a partition

It might look like the naive approach correctly hides the existence of individual records from
the dataset: each record of the access log will only influence one of the returned counts by
at most 1, and it is well known [128] that this basic mechanism provides ε-DP. However, it
fails to protect the existence of individual users: the same user could have visited the example
page many times with a particular browser agent, and therefore could have contributed an
arbitrarily large number of rows to visits for a particular GROUP BY partition, violating our
assumption that the query sensitivity is 1.

In PINQ and Flex, the differential privacy definition explicitly considers records as the
privacy unit. Because we instead want to protect the full contribution of users, we need to
explicitly include a notion of a user in our system design. In this work, we do this via the
notion of a user identifier, or user ID.

Because Listing 4.1 has unbounded sensitivity, adding noise to counts is not enough to
enforce differential privacy; we need to bound user contribution to each partition. This can
be addressed is by counting distinct users, which has a user-global sensitivity of 1, instead
of counting rows. Although this modifies query semantics, we chose this approach to keep
the example simple. We present the modified query in Listing 4.2, which assumes that the
column containing user ID information is named uid.

SELECT
browser_agent ,

COUNT(DISTINCT uid) + Laplace(1/ε)
FROM access_logs
GROUP BY browser_agent

Listing 4.2: Per-partition contribution bounding
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In other contexts, it might make more sense to allow a user to contribute more than once
to a partition. For example, we might want to count up to five visits from each distinct user
with each distinct browser agent. In this case, we would need to further modify the query
to allow multiple contributions and increase sensitivity to match the maximum number of
contributions.

4.2.2.2 Second pitfall: leaking partitions

Even if we bound the contribution of a user to each partition and adapt noise levels accordingly,
the query is still not ε-DP. Indeed, suppose that the attacker is trying to distinguish between
two datasets differing in only one record, but this record is a unique browser agent BAunique:
this browser agent does not appear in D1, but appears once in D2. Then, irrespective of the
value of the noisy counts, the GROUP BY partitions themselves are enough to distinguish
between the two datasets simply by looking at the output: BAunique will appear in the query
output for D2 but not for D1.

A simple solution to this problem was proposed in [230]: the idea is to drop from the
results all partitions associated with a noisy count lower than a certain threshold τ. τ is chosen
independently of the data, and the resulting process is (ε, δ)-DP with δ > 0. We call this
mechanism τ-thresholding. With a sufficiently high τ, the output rows with partitions present
in D2 but not D1 (and vice-versa) will be dropped with high probability, making the partitions
indistinguishable to an attacker. A longer discussion on the relation between ε, δ and τ can be
found in Section 4.2.3.6. This approach is represented in SQL in Listing 4.3.

SELECT
browser_agent ,

COUNT(DISTINCT uid) + Laplace(1/ε) AS c
FROM access_logs
GROUP BY browser_agent
HAVING c >= τ

Listing 4.3: GROUP BY filtering

PINQ and Flex handle this issue by requiring the analyst to enumerate all partitions to
use in a GROUP BY operation, and return noisy counts for only and all such partitions1. This
enforces ε-DP but impairs usability: the range of possible values is often large (potentially
the set of all strings) and difficult to enumerate, especially if the analyst cannot look at the
raw data.

Some data synthesis algorithms have been proposed to release ε-DP histograms over
an unbounded set of partitions [275], but those seem to be limited to datasets subject to
hierarchical decomposition. Our approach is simpler and more generic, at some cost in the
privacy guarantee.

1 The open-source implementation of Flex [208], however, does not appear to implement this requirement.
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4.2.2.3 Third pitfall: contributions to multiple partitions

Finally, we must consider the possibility of a user contributing to multiple partitions in
our query. Imagine a user visiting the example page with many different browsers, each
with a different browser agent. Such a user could potentially contribute a value of 1 to each
partition’s count, changing the sensitivity of the query to be the number of partitions, which
is unbounded!

Because both PINQ and Flex consider records as the privacy unit, this is not an issue
for their privacy models. So long as they are only used on datasets where that requirement
holds true, and where the sensitivity and stability impact of joins (and related operations) are
carefully considered, they will provide adequate DP guarantees. However as shown in [276],
these conditions are not always true.

Instead of adding strict requirements on the nature of the underlying dataset and on how
joins are used, we introduce a novel mechanism for bounding user contribution across
partitions. Concretely, we first choose a number κ, and for each user, we randomly keep the
contributions to κ partitions for this user, dropping contributions to other partitions. This
operation allows us to bound the global sensitivity of the aggregation: each user can then
influence at most unique κ counts, and we can adapt the noise level added to each count, by
using Laplace noise of scale κ/ε.

The final version of our query is shown in Listing 4.4. It uses a non-standard variant
of the SQL TABLESAMPLE operator, which supports partitioning and reservoir sampling, to
represent the mechanism we introduced. This final version satisfies (ε, δ)-differential privacy
for well-chosen parameters.

SELECT
browser_agent ,

COUNT(DISTINCT uid) + Laplace(κ/ε) AS c
FROM (
SELECT browser_agent , uid
FROM access_logs
GROUP BY browser_agent , uid

)

TABLESAMPLE RESERVOIR (κ ROWS PARTITION BY uid)
GROUP BY browser_agent
HAVING c >= τ

Listing 4.4: An (ε, δ)-DP query

In the remainder of this section, we formalize this approach, and adapt it to a larger set of
operations. In particular, we extend it to arbitrary aggregations with bounded sensitivity, and
we explain how to make this model compatible with joins.
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4.2.3 System model and design

In this section, we present an overview of the design of our framework, detail the building
blocks necessary to implement it, and formally define it as an operator in relational algebra.
We finish by providing a proof that the entire process provides user-level differential privacy.

4.2.3.1 Overview

As suggested in Section 4.2.1.3, we assume that there is a special column of the input dataset
that specifies which user owns each row. The system is agnostic to the semantics of this
special column. In principle, it can be any unit of privacy that we need to protect: a device
identifier, an organization, or even a unique row ID if we want to protect rows and not users.
For simplicity of notation we assume that this special column is a user identifier. Users may
own multiple rows in each input table, and each row must be owned by exactly one user. Our
model guarantees (ε, δ)-DP with respect to each user, as defined in Definition 79.

Our DP query engine uses the underlying SQL engine to track user ID metadata across
tables, and invokes a DP query rewriter when our anonymization query syntax is used on
tables containing user data and any applicable permission checks succeed. Listing 4.5 provides
an example of a SQL query accepted by our system.

SELECT WITH ANONYMIZATION
T1.partition_key ,

ANON_SUM(T2.val, 0, 1)
FROM Table1 T1 JOIN Table2 T2 USING(uid)
GROUP BY T1.partition_key

Listing 4.5: Anonymization query example

The query rewriter decomposes such queries into two stages, one before and one after our
introduced DP aggregation operator, invoked with SELECT WITH ANONYMIZATION.

The first stage begins by validating that all table subqueries inside the DP operator’s FROM
clause enforce unique user ownership of intermediate rows, which is informally described in
Section 4.2.3.2. Next, for each row in the subquery result relation, our operator partitions all
input rows by the vector of user-specified GROUP BY keys and the user identifier, and applies
an intermediate non-private SQL aggregation to each group. For example, for ANON_SUM, we
use SUM as a partial aggregation. Adjusting query semantics in this way is necessary to ensure
that, in the next stage, the cross-user aggregations of each partition receive only one input
row per user, this is described in Section 4.2.3.3.

For the second stage, we sample a fixed number of these partially aggregated rows for each
user to limit user contribution across partitions, which is described in Section 4.2.3.4. We
then compute a cross-user DP aggregation across all users contributing to each GROUP BY
partition, limiting user contribution within partitions; this is described in Section 4.2.3.5.
Finally, we randomly drop certain partitions that contain too few users, to guarantee that the
list of published partitions does not break differential privacy guarantees, a process described
in Section 4.2.3.6.
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The full process is formalized in Section 4.2.3.7, where we define our operator in the
language of relational algebra.

4.2.3.2 Allowed subqueries

SQL queries can, in principle, contain subqueries that perform arbitrary transformations on
the input tables. However, for our framework to guarantee differential privacy, we need to
limit this capability: we need the concept of row ownership to stay relevant throughout the
computation, and be able to determine which row of the subquery output belongs to which
user in the input dataset.

Thus, the relational operators present in the subquery must not create any intermediate
objects of shared ownership: no intermediate row may be derived from rows owned by
different users. A naive application of certain relational operators violate this requirement.
For example, for the aggregation operator, rows owned by distinct users may be aggregated
into the same partition. Then the resulting row from that partition will be owned by all users
whose data are contributed to the group. For the naive join operator, two rows from distinct
users may be joined together, creating a row owned by both users.

This restriction limits our system since some queries cannot be run. We observed that in
practice, most use-cases can be fit within these constraints, and leave extensions to a wider
class of queries for future work. This might require a different model than the one presented
here, but changing query semantics will always be necessary for queries with unbounded
sensitivity.

Assume that the column containing user identifier is named uid. We address the shared
ownership issue by restricting each operator composing the subquery such that, for each row
in that operator’s output relation, that row is derived only from rows in the input relation
that have matching uid attributes. We enforce this rule for aggregate operators by requiring
that the analyst additionally groups-by the input relation’s uid attribute. For join operators,
we require that the analyst adds a USING(uid) clause (or equivalent) to the join condition.
Additionally, each operator of T must propagate uid from the input relation(s) to the output
relation. In queries where this is unambiguous (i.e., the analyst does not refer to uid in the
query), we can automatically propagate uid.

A formalization of this approach, which list alternatives for each basic operator, is listed in
Table 4.3, in Section 4.2.3.7. They are enforced recursively during the query rewrite for each
operator that composes the subquery.

4.2.3.3 Per-user aggregation

First, we aggregate the data of each user per-partition, using the non-private version of the
aggregator in the original query. For example, for ANON_SUM, we use the SUM SQL operator
to sum all contributions of each user in each partition.

This operation guarantees that in the cross-user aggregation stage, each user contributes at
most once to each aggregation. This does come at the cost of introducing another semantic
change to the original query. For example, for ANON_AVG, we end up computing the average
of per-user averages, which could be completely different from the real average of all val-
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ues. It is easy to create examples of data distributions in which this difference has a large
impact; however, we observed that it does not seem to introduce significant bias in practical
applications.

This step also limits the type of aggregations that can be performed within our frame-
work: for example, we cannot easily implement ANON_COUNT(DISTINCT col) when col
is different from uid as the per-user aggregation would not contain enough information
to combine the contributions of multiple users (as col values need to be de-duplicated to
preserve semantics). We come back to these considerations in Section 4.3.1.

4.2.3.4 Stability bounding

Next, to bound the total privacy budget of the computation, we need to ensure that each user
contributes to a fixed number of partitions in the output row. To this end, we adapt the notion
of query stability from [273].

Definition 81 (Global stability). Let T be a function T : D → D. We say that T is c-stable if
for all D1, D2 ∈ D: ∥∥∥T (D1) − T (D2)

∥∥∥ ≤ c ‖D1 − D2‖ .

As an immediate consequence, if a user id owns k rows in D, and T is a c-stable transfor-
mation, then there are at most k · c rows derived from rows owned by id in T (D).

Our privacy model requires the input to the cross-user aggregation to have constant stability.
Simple SQL operators have a stability of one: for example, each record in an input relation
can only be projected onto one record. An addition or a deletion can only affect one record in
a projection, so projections have a stability of one. The same logic applies for selection.

Other operators, such as joins, have unbounded stability because source records can be
multiplied. Adding or removing a source record can affect an unbounded number of output
records. When SQL operators are sequentially composed, we multiply the stability of each
operator to yield the entire query’s overall stability. Thus, even a subquery accepted by the
checks of Section 4.2.3.2 might not be c-stable for any c.

To fix this problem, we can compose an unbounded transform T with a stability-bounding
transform Tκ to yield a composite κ-stable transform:∥∥∥Tκ(T (D1)) −Tκ(T (D2))

∥∥∥ ≤ κ ‖D1 − D2‖ .

To define Tκ, we use partitioned-by-user reservoir sampling with a per-partition reservoir
size of κ, which has a stability of κ. Reservoir sampling was chosen for its simplicity, and
because it guarantees a strict bound on the contribution of one user. Non-random sampling
(e.g. taking the first κ elements, or using systematic sampling) risks introducing bias in the
data, depending on the relative position of records in the dataset. Simple random sampling
does not guarantee contribution bounding, and all types of sampling with replacement can
also introduce bias in the data.

Joins appear frequently in queries [209], so it is imperative to support them in order for an
engine to be practical. Since joins have unbounded stability, a stability bounding mechanism
is necessary to provide global stability privacy guarantees on queries with joins. We can thus
support a well bounded, full range of join operators.
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4.2.3.5 Bounded-contribution aggregation

Let us now introduce the set of supported ε-DP statistical aggregates with bounded contribu-
tion. These functions are applied after the per-user, per-partition aggregation step discussed in
Section 4.2.3.3, and after the stability bounding operator. Importantly, at this step, we assume
that each user’s contributions to a single partition have been aggregated to a single input row;
this property is enforced by the query rewriter.
COUNT(DISTINCT uid) is the simplest example of an aggregation with bounded contribu-

tion: it counts unique users, so adding or subtracting a user will change the count by no more
than 1. For more complex aggregation functions, we must determine how much a user can
contribute to the result and add appropriately scaled noise. A naive solution without limits on
the value of each row leads to unbounded contribution by a single user. For example, a SUM
which can take any real as input has an unbounded L1-sensitivity (see Definition 80).

To address this, each ε-DP function accepts an additional pair of lower and upper limit
parameters L and U used to clamp (i.e., bound) each input. For example, consider the
anonymized sum function ANON_SUM(col, L, U).

Let sumU
L : D → R be the function that transforms each of its inputs x into x′ =

max(min(x, U), L), and then sums all x′. The global sensitivity for this bounded sum function
is:

∆sumU
L = max (|L| , |U |)

and thus, ANON_SUM can be defined by using this function and then adding noise scaled by
this sensitivity. A special case of ANON_SUM, widely used in practice, is ANON_COUNT, which
is equivalent to summing 1 for each record present in the dataset.

Once the sensitivity is bounded, noise is added to internal states using the well-known
Laplace mechanism (see Section 2.1.6.4) before a differentially private version of the aggre-
gate result is released.

For ANON_AVG, we use the Algorithm 2.4 from [252] (Section 2.5.5): we take the quotient
of a noisy sum (bounded as in ANON_SUM, and scaled by sensitivity |U − L|/2) and a noisy
count. ANON_VAR is similarly derived; we use the same algorithm to compute a bounded mean
and square it, and to compute a mean of bounded squares. ANON_STDDEV is implemented as
the square root of ANON_VAR.
ANON_NTILE, which returns a given percentile of values given as input, is currently based

on a Bayesian binary search algorithm [44, 215], and can be used to define ANON_MIN,
ANON_MAX, and ANON_MEDIAN. The upper and lower bounds are only used to restrict the
search space and do not affect sensitivity. At each iteration of the internal binary search, we
count the number of values below and above the target value, add noise to these two counts,
and determine the next step of this binary search based on these counts. Importantly, this
requires to keep all elements in memory, which does not scale to very large input data. A
simple solution, which we implemented, is to randomly sample input values once we reach a
memory limit. Further research is currently underway to find better options.

For the rest of this section, we assume that contribution bounds are specified as literals in
each query to simplify our presentation. Setting bounds requires some prior knowledge about
the input set. For instance, to average a column of ages, the lower bound could be reasonably
set to 0 and the upper bound to 120. To enhance usability in the case where there is no such
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prior knowledge, we also introduce a mechanism for automatically inferring contribution
bounds, described in more detail in Section 4.2.5.1.

Table 4.2 lists our suite of aggregate functions. For each function that can be implemented
using other functions, we give the equivalent formulation. Note that the equivalent formulation
is given using SQL for simplicity, but we do not always implement it via SQL rewriting; we
sometimes implement them as standalone low-level aggregators and only reuse the code for
other aggregators. We come back to these implementation considerations in Section 4.3.1.

Function Equivalent formulation

ANON_SUM(col, L, U)

ANON_COUNT(col, U) ANON_SUM(1, 0, U)1

ANON_COUNT(DISTINCT uid) ANON_COUNT(uid, 1)

ANON_AVG(col, L, U) 2

ANON_VAR(col, L, U)
ANON_SUM(col*col, 0, MAX(L*L,U*U))

- ANON_SUM(col, L, U)^23

ANON_STDDEV(col, L, U) SQRT(ANON_VAR(col, L, U))

ANON_NTILE(col, ntile, L, U) 4

ANON_MIN(col, L, U) ANON_NTILE(col, 0, L, U)

ANON_MAX(col, L, U) ANON_NTILE(col, 1, L, U)

ANON_MEDIAN(col, L, U) ANON_NTILE(col, 0.5, L, U)

1 Technically, ANON_SUM(IF col IS NOT NULL THEN 1 ELSE 0, 0, U).
2 This could be formulated as ANON_SUM(col, L, U) / ANON_COUNT(col, U’) for a well-chosen U’. How-

ever, the choice of U’ makes this option undesirable, so we implement ANON_AVG separately instead; see the
extended discussion in Section 4.3.1.1.

3 Note that the per-user aggregation step for ANON_VAR is not VAR; we give more details about this case in
Section 4.3.1.2.

4 We discuss this aggregation in more detail in Section 4.3.1.3.

Table 4.2: ε-DP aggregate functions

4.2.3.6 Minimum user threshold

In this section, we outline a technique proposed in [230] to prevent the presence of arbitrary
partitions (GROUP BY keys) in a query from violating the privacy predicate: the τ-thresholding
mechanism. For example, consider the naive implementation in Listing 4.6.

SELECT col1, ANON_SUM(col2, L, U)
FROM Table
GROUP BY col1

Listing 4.6: Leaking GROUP BY keys
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Suppose that for the value col1 = c, only one user id contributed to the sum. Then
querying without data from u would reveal the absence of the output row corresponding to
group col1 = c. It would be revealed with certainty that user u has value c for col1.

To prevent this, for each result aggregation row, we calculate an ε-DP count of unique
contributing users. If that count is less than some minimum user threshold τ, the result row is
discarded. τ is chosen by our model based on ε, δ, and κ parameter values. In the example
above, the output row for group col1 = c would only appear in the result if noise added to
the total user count (1) would result in a value larger than τ: this only happens with fixed
probability, which we can control by carefully chosing τ.

The choice of τ depends on ε, δ, and κ;

Theorem 12. Let ε, δ, κ > 0. Define

τ = 1 −
κ ln(2 − 2(1 − δ)1/κ)

ε
.

If an SQL query:

• guarantees that each user appears in at most κ partitions;

• for each partition, computes and releases an ε/κ-DP noisy count of the number of
contributing users using the Laplace mechanism;

• does not release anything for empty partitions;

• and only releases counts greater or equal than τ;

then it provides user-level (ε, δ)-DP.

Proof. First, note that that if a dataset D contains a single row, then the probability that an
ε-DP noisy count of the number of rows in D will yield at least τ for any τ ≥ 1 is

ρτ =
1
2

e−(τ−1)ε.

Indeed, this is a special case of Section 5.2 in [230]: the noisy count is distributed as the
Laplace distribution centered at the true count of 1 with scale parameter 1/ε. Evaluating the
CDF at τ yields ρτ.

Let us now prove the main statement. LetM be the SQL operation described in the theorem.
Consider any pair of datasets D1, D2 such that ‖D1 − D2‖u = 1 and such that the set of non-
empty groups from D1 is the same as that for D2; call this set G. The ε/κ-DP noisy count
will get invoked for all groups in G for both datasets, and the τ-thresholding applied. For all
groups not in G, no row will be released for both datasets. A change in the user may affect a
maximum of κ output counts, each of which is ε/κ-DP, so by the composition property of
differential privacy (see Proposition 5), we have:

P [M (D1) ∈ S ] ≤ eεP [M (D2) ∈ S ]

Next, consider an empty dataset D3. Let U be the set of all outputs and let E be the output set
containing only the output “no result rows are produced”. Then we have P [M (D3) ∈ U \ E] =
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0. It remains to show that for dataset D4 containing a single user, P [M (D4) ∈ U \ E] ≤ δ.
The ε-DP count is computed by counting the number of rows, and then adding Laplace noise
with scale κ/ε. Dataset D4 contains values for a maximum of κ groups; it is only possible to
produce an output row for those groups. For each groups, the probability that the noisy count

will be at least τ is ρτ = 1
2 e−

(τ−1)ε
κ , by the initial observation. Then:

P [M (D4) ∈ E] = 1 − (ρτ)
κ

so we need to satisfy:
P [M (D4) ∈ U \ E] = (ρτ)

κ
≤ δ.

Solving for τ in the expression (ρτ)
κ
≤ δ:

τ ≥ 1 −
κ ln(2 − 2(1 − δ)1/κ)

ε
.

Lastly, consider SQL engine operator f and datasets D5, D6 such that D6 is D5 with the
addition of a single user. It remains to consider the case where D5 and D6 do not have the
same set of non-empty groups. Since they differ by one user, D6 may have a maximum of κ
additional non-empty groups, each containing 1 unique user; call this set of groups G. Call
the set of the remaining groups G′. Split the rows of D5 into two datasets: the rows that
correspond to groups in G and G′, respectively. Call the rows of D6 that correspond to groups
G as D0

6 and the rows that correspond to groups G′ as D1
6. Note that D5 only contains rows

corresponding to groups G′. Now, split the operator f into two operators f0 and f1: f0 is f
with an added filter that only outputs result rows corresponding groups in G; f1 is the same
for G′.

We have decomposed our problem into the previous two cases. The system of f0, D5, and
D0

6 is the case where the pair of datasets have the same set of non-empty groups, G′. The
system of f1, the empty dataset, and D1

6 is the case where the non-empty dataset contains a
single user. Each system satisfies the DP predicate separately. Since they operate on a partition
of all groups in D5 and D6, the two systems satisfy the DP predicate when recombined into
f , D5, and D6.

We have shown that for two datasets differing by a single user, the DP predicate is satisfied.
Thus, we have shown that our SQL query provides user-level (ε, δ)-DP. �

Note that this operation must be taken into account as part of privacy budget computation.
If the only operation that the user requested was ANON_COUNT(DISTINCT uid), then we can
simply post-process the results of this noisy aggregation to threshold the output. Otherwise,
we have to add this aggregation alongside the requested ones in the query rewriter, and split
the budget between all these operations.

4.2.3.7 Query semantics

In this section, we formally define our (ε, δ)-DP relational operator, denoted by χ, using some
of the conventional operators in relational algebra. This is simply a reformulation than the
process described in Section 4.2.3 so far.
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Operator Basic form Required variant

Projection Πa(R) Πuid,a(R)

Selection σϕ(R) σϕ(R)

Aggregation gGa(R) uid,gGa(R)

Join R ./θ
cond

S R ./θ
cond∧R.uid=S .uid

S

Table 4.3: Allowed table subquery operators

First, let us quickly recall standard operators in relational algebra, used to describe the
transformations on datasets that occur in a query.

• Πs(R): project columns s from R.

• σϕ(R): select from R satisfying the predicate ϕ.

• gGa(R): group on the cross products of distinct keys in the columns in g; apply the
aggregations in a to each group.

• R ./θ
cond

S : take the cross product of rows in R and S , and select only the rows that satisfy

the predicate cond.

Let s (select-list), g (group-list), and a (aggregate-list) denote the attribute names s1, . . . , si,
g1, . . . , g j, and a1, . . . , ak, respectively. Assume a is restricted to only contain the ε-DP
aggregate function calls discussed in Section 4.2.3.5. Our introduced operator, gχa, can be
interpreted as an anonymized grouping and aggregation operator with similar semantics to
gGa, and supports queries in the general form given in Listing 4.7.

SELECT WITH ANONYMIZATION s, a
FROM T(R)
GROUP BY g

Listing 4.7: Generic form of the queries supported by our relational operator χ

First, χ verifies row ownership constraints on T : it must not contain any additional analyst-
specified operators which create intermediate objects of shared ownership, as defined in
Section 4.2.3.2. Formally, χ imposes that all operators present in this subquery are allowed,
as defined by Table 4.3.

If R is an input table where each row is owned by exactly one user, and T satisfies those
constraints, then this guarantees that T (R) also has such a user identifier uid in its schema.
We can then use T (R) as the input to our proposed operator χ, and define our query Q:

Q = Πs(gχa(T (R)))

The query rewriter discussed in Section 4.2.3.1 transforms a query containing χ into a
query that only contains SQL primitives, minimizing the number of changes to the underlying
SQL engine. We define the following in order to express our rewriting operation.
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• Let #uid denote the number of user IDs present in a given partition. In SQL, it would
be expressed as COUNT(DISTINCT uid). We use it in the condition #uid ≥ τ, which
captures the τ-thresholding mechanism introduced in Section 4.2.2.2 and discussed in
more detail in Section 4.2.3.6.

• Let a′ be the corresponding non-ε-DP partial aggregation functions of a. For example,
if a is ANON_SUM, a′ would be SUM.

• Let mTn behave like a reservoir-sampling SQL TABLESAMPLE operator where m is the
grouping list and n is the number of samples per group. In other words, the operation
mTn(R) partitions R by columns m. For each partition, it randomly samples up to n
rows. We use T as this stability-bounding operator, discussed in Section 4.2.3.4.

When the query rewriter is invoked on the following relational expression Q containing χ:

Q = Πs(gχa(T (R)))

it returns the modified expression, with χ expanded:

U = Πuid,g,a′ (uidTκ(uid,gGa′ (T (R))))

S = Πsσ#uid≥τ(gG#uid,a(U))

Effectively, the rewriter splits Q into the two-stage aggregation U and S .

• U groups the output of T (R) by the key vector (uid, g), applying the partial aggregation
functions a′ to each group. κ rows are then sampled for each user. The first aggregation
enforces that there is only one row per user per partition during the next aggregation
step.

• S performs a second, differentially private, aggregation over the output of U. This
aggregation groups only by the keys in g and applies the ε-DP aggregation functions
( f (uid), a). These functions assume that every user contributes at most one input row.
A filter operator is applied last to suppress any rows with too few contributing users.

Together, this implements the process described in the previous parts of Section 4.2.3.
Let us illustrate this process with a concrete example. Consider the following query. It

assumes we have an Employee table and an Order table, which both have a uid field, and it is
counting the number of orders made by employees in each department.

SELECT WITH ANONYMIZATION
dept, ANON_COUNT(*, 5) AS c

FROM Employee E JOIN Order O USING(uid)
GROUP BY dept

Listing 4.8: Anonymization query containing a simple join.
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Recall that ANON_COUNT(*, U) is equivalent to ANON_SUM(col, 0, U) in the cross-user
aggregation step. We can express this query in relational algebra using our DP operator χ:

Q = Πdept,c(deptχANON_COUNT(*, 5) AS c(E ./θ
E.uid=O.uid

O))

Let us expand χ into the two-stage aggregation, U and S , and let us call T the initial table
subquery. Our query can then be written as:

T = Πdept,uid,c2 (dept,uidGCOUNT(*) AS c2 (E ./θ
E.uid=O.uid

O))

U = Πdept,uid,c2 (uidTκ(U))

S = Πdept,cσc3≥τ(deptGANON_SUM(c′,0,5) AS c,ANON_COUNT(*) AS c3
(T ))

Note that we add an additional user counting ε-DP function, aliased as c3, which is
compared to our threshold parameter, τ, to ensure that the grouping does not violate the
(ε, δ)-DP predicate, to be discussed in Section 4.2.3.6. In this case c3 is the number of unique
users in each department: as each user contributes at most 1 to each partition, we can simply
use ANON_COUNT(*) to compute this count of unique users.

In Figure 4.9, we illustrate the workflow with example tables Employee and Order, τ = 2,
and κ = 1.

4.2.3.8 User-level differential privacy

In this section, we show that our engine satisfies user-level (ε, δ)-DP, as defined in Sec-
tion 4.2.1.3.

Suppose that a query M has aggregate function list a = a1, . . . , aN , and grouping list
g = g1, . . . , gJ . Let the privacy parameter for aggregation function ai be εi.

Consider any set of rows owned by a single user in the input relation of our anonymization
operator, gχa. We first partition and aggregate these rows by the key vector (uid, g), before
sampling up to κ rows for each partition by uid.

The result for a group j is reported if the τ-thresholding predicate defined in Section 4.2.3.6
is satisfied. Computing and reporting the comparison count for this predicate is ε′j-DP. For
D1, D2 ∈ D, such that they differ by a user’s data for a single group j, consider each
aggregation function ai as applied to group j. By composition theorems and Theorem 12, we
provide (ε′j +

∑
εi, δ j) user-level (ε, δ)-DP for that row.

However, there are many groups in a given query. Due to our stability bounding mechanism,
a single user can contribute to up to κ groups. The κ output rows corresponding to these groups
can be thought of as the result of κ sequentially composed queries. Let D1, D2 ∈ D such that
‖D1 − D2‖u = 1. Let ε be the sum of the κ greatest elements in the set

{
ε′j +

∑
εi
}

j=1,...,J
.

Again, by composition, we conclude that for any output set S , and some δ > 0, we have

P [M (D1) ∈ S ] ≤ eεP [M (D2) ∈ S ] + δ

This shows that given engine-defined parameters ε, δ, and κ, it is possible to set privacy
parameters for individual ε-DP functions to satisfy the query (ε, δ)-DP predicate. For example,
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we can set ε′j and εi to ε
κ(N+1) for all i and j. δ is enforced by the derived parameter τ as

discussed in Section 4.2.3.6. Both user-privacy parameters ε and δ can therefore be bounded
to be arbitrarily small by analysts and data owners.

Note that the method we use to guarantee user-level differential privacy can be interpreted as
similar to row-level group privacy: after the per-user aggregation step, we use the composition
theorem to provide group privacy for a group of size κ. Alone, row-level group privacy does
not provide user-level privacy, but in combination to user-level contribution bounding, this
property is sufficient to obtain the desired property.

4.2.4 Accuracy

In this section, we explore the accuracy of our system by running numerical experiments and
provide analytical reasoning about the relationship between accuracy and various parameters.

4.2.4.1 Experimental accuracy

We assess accuracy experimentally using TPC-H [87], an industry standard SQL benchmark.
The TPC-H benchmarks contains a dataset schema and queries that are similar to those used
by analysts of personal data at real-world organizations. In addition, the queries contain
interesting features such as joins and a variety of aggregations. We generate a TPC-H dataset
with the default scale factor of 1. We treat suppliers or customers as “users”, as appropriate.
Our metric for accuracy is median relative error, the same one used in [209]; a smaller median
relative error corresponds to higher utility.

We compute the median relative error of 1,000,000 runs for our model over TPC-H Query
1 using three different aggregation functions and ε = 0.1 in Table 4.4. We compare our
results to 1,000,000 runs of Flex over the same query, and 10,000 runs (due to performance
considerations) of PINQ over the same query. To present a fair comparison, we disabled τ-
thresholding and compared only one result record to remove the need for κ stability bounding.
In addition, each run of the experiment was performed using a function of fixed sensitivity,
controlled by supplying the function with a lower bound of 0 and an upper bound of the value
in the ∆uQ1 column. The bounds were fixed to minimize accuracy loss from contribution
clamping.

For our experiments with PINQ and Flex, we also set sensitivity to our previously deter-
mined ∆uQ1 listed in Table 4.4. The results are close to our model’s results, but because
neither PINQ nor Flex can enforce contribution bounds for datasets with multiple contribu-
tions per user, incorrectly set sensitivity can result in query results that are not differentially
private. Such incorrectly set bounds can be seen in experiments in Johnson et al. [209] and
McSherry’s analysis [276], and in the last row of Table 4.4, where PINQ and Flex report
errors far below what are required to satisfy the ε-DP predicate.

With correctly set sensitivity bounds our model’s results are comparable to PINQ’s results
for count and average. Implementation differences in our median function mean that our
error is lower by a factor of 2. Both PINQ and our model outperform Flex’s result for count
by around an order of magnitude. We do not report errors for average and median for Flex
because Flex does not support those functions.
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Function ∆uQ1 Our model PINQ Flex

ε-COUNT(*) 373 0.00175 0.00179 0.0197

ε-AVG(l_extendedprice) 100000 0.00181 0.00181 1

ε-MEDIAN(l_extendedprice) 100000 0.00189 0.00349 1

ε-COUNT(*) 12 0.993 4.727 × 10−6 2.70 × 10−5

1 Unsupported functions
2 Intentionally incorrect sensitivity to demonstrate contribution bounding

Table 4.4: TPC-H Query 1 errors comparison with others (ε = 0.1)

Query ∆uQ κ Experimental error τ-thresholding rate δ

Q4 5 5 0.0339 5.40 × 10−5 6.78 × 10−7

Q13 1 1 0.00677 0.309 6.78 × 10−7

Q16 1 5 11.31 0.9999606 2.07 × 10−4

Q21 1 1 1.601 0.999796 2.07 × 10−4

1 Results uninterpretable due to high levels of τ-thresholding

Table 4.5: Selected TPC-H join query results (ε = 0.1)

We also ran our system over a selection of TPC-H queries containing joins, the experimental
results are presented in Table 4.5. Similarly, we report the median relative error of 1,000,000
runs for each query using ε = 0.1. We report the impact of τ-thresholding (the ratio of
suppressed records), suggesting that our model is (ε, δ)-DP. δ was set with δ = n−ε ln n,
where n is the number of distinct users in the underlying dataset: either customers or suppliers,
depending on the query.

Q4 represents how our system behaves when very little τ-thresholding occurs. Q16 and
Q21 demonstrate the opposite, both queries exhibit a very large error that differs from the
theoretical error due to most partitions being removed by the threshold because of their
small user count. Indeed, this is by design: as partition user counts approach 1, the ratio of
τ-thresholding approaches (1 − δ)1/κ. Finally, Q13 represents a more typical result, a query
containing mostly medium user count partitions with a long tail of lower count partitions. A
moderate amount of τ-thresholding occurs which increases error compared to Q4, but the
results are still quite accurate.

4.2.4.2 Impact of parameters on utility

In this section we explore the relationship between utility and various parameters, which must
be adjusted to balance privacy and utility [13].
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Impact of ε

First, let us discuss the effect of ε on the accuracy of the query results. Note that ε is inversely
proportional to the Laplace scale parameter used by differentially private aggregators to add
noise. Hence, an increase in ε leads to a decrease in utility.

Proposition 30. The median error from Laplace noise of scale ∆u/ε is ln(2)∆u
ε .

Proof. Let x be the median noise. By symmetry, we have:

1
4
= CDFLaplace(x) −CDFLaplace(0)

=

(
1 −

1
2

e
−xε
∆u

)
−

1
2

and thus:

xcount =
ln(2)∆u

ε
.

�

Similarly, the effect of the number of aggregations is straightforward. When a single query
contains N aggregations, the privacy budget is split equally among them: each aggregation
will satisfy (ε/N)-differential privacy, so the median error degrades inversely with the number
of aggregations.

Changing the value of ε also impacts partition selection: recall that the threshold τ was
defined in Theorem 12 as

τ = 1 −
κ ln(2 − 2(1 − δ)1/κ)

ε
.

In particular, if all other parameters are fixed, τ = Θ
(

1
ε

)
: multiplying ε by two means that

we will be able to keep partitions with approximately half as many users.

Impact of δ

What is the effect of varying δ for a fixed ε? This causes the threshold τ to change, which
changes the number of records dropped due to thresholding. Similarly, changing κ modifies
the number of records dropped due to contribution bounding. We first perform experiments
on TPC-H Query 13 with ε = .1 and varying δ to quantify the impact on partitions returned;
Figure 4.10 displays the results. The figure shows that as δ increases exponentially, the
proportion of partitions thresholded decreases somewhat linearly.

Impact of κ

Next, we analyze the effect of κ for a specific artificial query. Consider the following query
after rewriting.

SELECT ANON_COUNT(*)
FROM (SELECT uid, ROW_NUMBER() as rn

FROM Table
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Figure 4.10: Partition thresholding rates on Q13 induced by various δ.

GROUP BY uid, rn)
TABLESAMPLE RESERVOIR

(κ ROWS PARTITION BY uid)

Listing 4.9: Anonymization query after rewriting, showing the effect of κ.

Suppose that there are n users in the database. Suppose each user appears in a number of
partitions distributed according to a fixed probability distribution θ, and call Xi the (random)
number of partitions in which user i appears. Then the proportion pκ of partitions dropped
due to reservoir sampling is:

pκ =

∑n
i=1 max (Xi − κ, 0)∑n

i=1 Xi
.

Figure 4.11 shows the effect of κ on pκ with n = 1000 and various distributions θ. All
distributions have similar behavior as κ increases, but the median percent error declines at
different speeds based on distribution shape.

Finally, we analyze the effect of clamping on accuracy using model input distributions.
Since clamping occurs at the ε-DP aggregation level, we focus on input sets that have at most
one row per user.

Consider finding ANON_AVG(col, L, U), where there are n values of col uniformly
distributed on [a, b]. If the input distribution is symmetric, symmetric clamping will not
create bias, so we clamp only one end: consider clamping bounds L and U such that L = a
and a < U < b. We analyze expected error since median error is noisier when running
experiments, and the behavior of both metrics are similar.

We plot the impact of the upper clamp bound on total expected error for uniform col with
(a, b) = (50, 150) in Figure 4.12, using L = −200, n = 100, and various values of ε. The
optimal point on each curve is marked with a circle. To maximize accuracy, overestimating
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Figure 4.11: Median relative error induced by κ for various distributions centered at 100.

the spread of the input set must be balanced with restricting the sensitivity. Analysis with the
other aggregation functions yields similar results.
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Figure 4.12: Expected relative error depending on the upper clamp bound for a uniform distribution on
[50, 150], using a lower clamp of −200, n = 100, and various values of ε. We highlight
the optimal point on the curve, with the least expected error.

Note that overestimating the spread of the input set creates less error than underestimating
it; the curves in Figure 4.12 do not grow very fast after the optimal point. This can be explained
analytically: the unclamped expected mean of col is a+b

2 ; for col clamped between L and
U, it is:

(2aU − a2 −U2)

2(b − a)
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so the expected error of the clamped mean is

(b −U)2

2(b − a)
.

Compare the expected error to the median noise added by ANON_AVG(col, L, U), which
is approximately ln(2)(U−L)

nε . The clamping error grows quadratically with b −U, while the
noise error only grows linearly with U − L. The behavior for other distributions is similar.

4.2.5 Usability

Designing a differentially private query engine for non-expert use requires a number of
considerations beside the design and implementation of the system described in the previous
section. In this section, we focus on usability: what makes such a system difficult to use by
analysts, and how can we mitigate these concerns.

4.2.5.1 Automatic bounds determination

One major difference between standard SQL queries and queries using our differentially
private aggregation operator is the presence of bounds: e.g., when using ANON_SUM, an analyst
must specify the lower and upper bound for each sum input. This differs from standard
workflows, and more importantly, it requires prior knowledge of the data that an analyst might
not have.

To remove this hurdle, we designed an aggregation function which can be sequentially
composed with our previously introduced ε-DP functions to automatically compute bounds
that minimize accuracy loss. Call this function APPROX_BOUNDS(col).

Without contribution bounds, the domain of an ε-DP function in our model spans R.
Finding differentially private extrema over such a range is difficult. Fortunately, we can
leverage two observations. First, inputs to this function are represented on a machine using
finite precision; typically 64-bit integers or floating point numbers. Second, bounds do not
need to be close to the real extrema: clipping a small fraction of data will usually not have
a large influence on the aggregated results, and might even have a positive influence by
removing outliers.

Consider an ANON_SUM operation operating on 64-bit unsigned integers where bounds are
not provided. We divide the privacy budget in two: the first half to be used to infer approximate
bounds using APPROX_BOUNDS(col); the second half to be used to calculate the noisy sum
as usual. We must spend privacy budget to choose bounds in a data-dependent way.

In the APPROX_BOUNDS(col) function, we instantiate a 64-bin logarithmic histogram of
base 2, and, for each input i, increment the dlog2 ieth bin. If we have a total budget of ε for
this operation, we add Laplace noise of scale 1/ε to the count in each bin, as is standard for
differentially private histograms. Then, to find the approximate maximum of the input values,
we select the most significant bin whose count exceeds some threshold K. This threshold
depends on two parameters: the number of histogram bins B, and the probability of a false
positive p of an empty bin exceeding the threshold.
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The probability that a given bin produces a count above x if its true count is zero is 1
2 e−xε.

Suppose we are looking for the most significant bin with a count greater than K. In the
APPROX_BOUNDS(col) function, we iterate through the histogram bins, from most to least
significant, until we find one exceeding t. In the worst case, the desired bin is the least
significant bin. This means B − 1 bins with exact counts of 0 must not have noisy counts
exceeding K. Thus, the probability that there was not a false positive in this worst case is:

p = (1 −
e−Kε

2
)

B−1

.

Solving for K, we obtain:

K =
1
ε

ln
(
2 − 2p

1
B−1

)
.

For example, B = 64 for unsigned integers. When setting p, the trade-offs of clipping
distribution tails, false positive risk, and algorithm failure due to no bin count exceeding K
must all be considered. Values on the order of (1 − 10−9) for p can be suitable, depending on
ε and the size of the input dataset.

The approximate minimum bound can similarly be found by searching for the least signifi-
cant bin with count exceeding t. We generalize this for signed numbers by adding additional
negative-signed bins, and for floating point numbers by adding bins for negative powers of 2.

Note that there are two possible ways to use this algorithm to automatically generate
reasonable bounds: we can either use once over the entire dataset, and use the same bounds
in every partition, or use it in each partition separately. There are pros and cons to both
approaches. Using it over the entire dataset means that more data is being used, so a smaller
fraction of the ε can be used for this operation. Further, for aggregations like sums and counts,
it means that the noise magnitude used in each partition will be the same, which makes the
output data easier to reason about. On the other hand, using it over each partition separately
is better suited for use cases where the magnitude of values varies significantly between
partitions.

4.2.5.2 Providing a measure of accuracy

A ubiquitous challenge for a DP interface is the fact that acceptable accuracy loss depends
on the data characteristics, as well as on the problem at hand. We address this by giving
analysts a variety of utility loss measures. These utility loss measures can be used in two
ways, depending on the scenario in which the differentially private query engine is used.

• If the engine is used to generate differentially private data according to a given strategy,
by someone who has access to the raw data, the analyst can try various values of
parameters to determine which give the best utility for their use case.

• If the engine is used to allow an untrusted analyst to send queries to a dataset to which
they have no access, we can still return a subset of utility metrics without breaking
differential privacy guarantees.
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There is a profound difference between these two scenarios. Some measures of data loss are
useful in both. Since all parameters (ε, δ, κ, etc.) are public, the method and noise parameters
used in the anonymization process are not sensitive, and can be returned to the engine client.
We could give as much detail as we could; however, in practice, we have found that confidence
intervals (CI) are the best way to communicate uncertainty about the results. The CI can be
calculated from each function’s contribution bounds and share of ε. Importantly, it does not
account for the effect of clamping or thresholding. Note that for some aggregations, it might
be difficult to compute a CI. For example, averages need to combine the confidence intervals
from two sources of noise (the sum and the count), and we do not support CI for quantiles.

Some measures are more useful in the former scenario, if the analyst has access to the raw
data. A particularly useful metric is partition loss: how many partitions with low user counts
are removed by τ-thresholding. We can simply return the percentage of lost partitions due
to τ-thresholding, possibly as a percentage of all partitions. It would be useful to return this
metric in the untrusted use case, but making it differentially private is not straightforward:
a single user could add an unbounded amount of partitions, so the sensitivity of this metric
is unbounded; and clamping it would defeat the point. This metric is important because it
is typically actionable: coarsening the partitions (e.g. aggregating the data daily instead of
hourly) can drastically limit partition loss.

Finally, it is also useful to surface the data loss due to clamping: how many values are
clamped, and what is their magnitude. In the “trusted analyst” use case, we can visualize both
by simply comparing the private histogram with the non-private histogram, an example is
given in Figure 4.13. In the untrusted use case, if we use automatic bounds determination
(Section 4.2.5.1), the log-scale histogram gives an approximate fraction of inputs exceeding
the chosen bounds; since this is private, it could also be returned to the analyst.

To represent privacy, a techniques and perspectives have been proposed in the literature [200,
234, 243, 290, 304]. In practice, we rely on the prior-posterior explanations and visualizations
like those presented in Section 2.1.6.2 to provide an intuitive idea of the guarantees offered
by different privacy parameters. This choice is often deferred to privacy experts, we discuss
possible approaches to tackling this challenge in Section 4.3.4.1.

4.2.6 Robustness and testing

Writing bug-free software is notoriously hard. This is particularly problematic when bugs
can potentially break the privacy guarantee that a tool is supposed to provide. A well-known
example is the attack on the naive implementation of the Laplace mechanism on floating-point
numbers [283]: the noisy version of such numbers can leak information on their raw value via
their least significant bits. Fixing known vulnerabilities is one thing; but how can we increase
our degree of confidence that the software used for important production use-cases correctly
enforces its advertised privacy guarantees?

General software development good practices are obviously part of the solution: keeping
the design simple and modular is one example, requiring code reviews before any code change
is another. In this section, we focus on three types of methods to detect bugs and increase our
overall level of confidence in our tooling: manual testing, unit testing, and stochastic testing.
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Figure 4.13: Screenshots of an internal tool showing the kind of metrics that can be surfaced to a
trusted data custodian to assist them in tweaking various parameters. A more detailed
description of this tool can be found in [314].
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4.2.6.1 Manual testing

We audited the code manually and found some implementation issues. Some of these issues
have previously been explored in the literature, notably regarding the consequences of using
a floating-point representation with Laplace noise. Some of them, however, do not appear
to have been previously mentioned in the literature, and are good examples of what can go
wrong when writing secure anonymization implementations.

One of these comes from another detail of floating-point representation: special NaN (“not
a number”) values. These special values represent undefined numbers, like the result of 0/0.
Importantly, arithmetic operations including a NaN are always NaN, and comparisons between
any NaN and other numbers are always False. This can be exploited by an attacker, for
example using a query like ANON_SUM(IF uid=4217 THEN 0/0 ELSE 0). The NaN value
will survive naive contribution bounding (bounds checks like if(value > upper_bound)
will return False), and the overall sum will return NaN iff the condition was verified. We
suspect that similar issues might arise with the use of special infinity values, although we
have not found them in our system (such values are correctly clamped).

Another possible failure mode is overflows and underflows. If sufficiently many large 64-bit
integer values are added, the resulting number can be close to the maximum possible 64-bit
integer. A single element added can make the result overflow, and the result might be a very
small negative integer. If noise addition is implemented in a way that implicitly converts
the input into a floating-point number, the resulting distributions of noisy outputs are very
distinguishable: one will be almost surely positive, the other negative.

From these two examples, we found that a larger class of issues can appear whenever
the user can abuse a branching condition to fail if an arbitrary condition is satisfied (by
example, by throwing a runtime error or crashing the engine). Thus, in a completely untrusted
environment, the engine should catch all errors and silently ignore them, to avoid leaking
information in the same way; and it should be hardened against crashes. We do not think that
we can completely mitigate this problem, and silently catching all errors severely impedes
usability. Thus, is it a good idea to add additional risk mitigation techniques, like query
logging and auditing.

Interestingly, fixing the floating-point issue in [283] can lead to a different issue when
using the Laplace mechanism in τ-thresholding. The secure version of Laplace mechanism
requires rounding the result to the nearest r, where r is the smallest power of 2 larger than
1/ε. If the τ-thresholding check is implemented as if (noisy_count >=τ), then a noisy
count of e.g. 38.1 can be rounded up to e.g. 40 (with r = 4). If the threshold τ is 39, and
the δ calculation is based on a theoretical Laplace distribution, then a noisy count of 38.1
should not pass the threshold, but will: this leads to underestimating the true δ. This can be
fixed by using a non-rounded version of the Laplace mechanism for thresholding only; as the
numerical output is never displayed to the user, attacks described in [283] do not apply.

4.2.6.2 Unit testing

A standard practice in software engineering is unit testing: testing a program by verifying that
given a certain input, the program outputs the expected answer. Of course, for differential



4.2 building a usable differentially private query engine 207

privacy software, the situation is more complicated: since DP requires adding random noise to
data, we cannot simply test for output equality. Of course, this does not mean that we should
give up on unit testing altogether. Two natural, complementary approaches are possible. We
believe that using them both is necessary to write solid, production-ready code.

The first approach is to write traditional unit tests for the parts of the system that do not
depend on random noise. For example, the cross-partition contribution bounding presented in
Section 4.2.3.4 can relatively easily be put under test: create a fake input dataset and query
where each user contributes to many rows, and verify that after the stability-bounding operator
with parameter κ, each user contributes at most to κ rows. Similarly, the parts of the system
that do more than simply adding noise can be tested by removing the noise entirely; either by
mocking the noise generator, or by providing privacy parameters large enough for the noise to
be negligible: this is partly how we test operations like ANON_SUM, which clamp their output
between specified bounds.

The second approach is to write tests that take the noise into account, by allowing the
output to be between certain bounds: for example, we can test that adding noise to 42 leads to
a number between 22 and 62. The tolerance of these tests needs to be carefully calibrated
depending on the parameters used in the output, and the desired flakiness of the unit tests:
what percentage of false positives (the test fails only even though the code is correct, purely
because of improbable noise values) is acceptable. Even with a very low flakiness level (we
routinely use values lower than 10−20), such tests can detect common programming mistakes,
especially for complex operations. Examples of such tolerance calculations can be found in
the documentation of our open-source library [365].

This approach based on tolerance levels is useful, but since we typically want to limit the
flakiness probability to very small values, it only provides a partial guarantee that. Furthermore,
if these simple approaches can check a number of properties of the software under test, they
fail at detecting differential privacy violations, which is the most crucial property that we
want to guarantee.

4.2.6.3 Stochastic testing

While the operations used in the engine are theoretically proven to be differentially private,
it is crucial to verify that these operations are implemented correctly. Unit tests can find
logical bugs, but it is also important to test the differential property itself. Of course, since the
number of possible inputs is unbounded, and differential privacy is a property of probability
distributions, it is impossible to exhaustively and perfectly check that the engine provides
differential privacy. Thus, we fall back to stochastic testing and try to explore the space of
datasets as efficiently as possible. This does not give us a guarantee that an algorithm passing
the test is differentially private, but it is a good mechanism to detect violations.

Note that we focus on testing DP primitives (aggregation functions) in isolation, which
allows us to restrict the scope of the tests to row-level DP. We then use classical unit testing
to independently test contribution bounding. The approach could, in principle, be extended to
end-to-end user-level DP testing, although we expect that doing so naively would be difficult
for scalability reasons. We leave this extension as future work.
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Our testing system contains four components: dataset generation, search procedure to find
dataset pairs, output generation, and predicate verification.

Input generation

First, what datasets should we be generating? All DP aggregation functions are scale-invariant,
so without loss of generality, we can consider only datasets with values in a unit range [−r, r].
Of course, we cannot enumerate all possible datasets [−r, r]S , where S is the size of the
dataset. Instead, we try to generate a diverse set of datasets. We use the Halton sequence [186]
to do so. As an example, Figure 4.14 plots datasets of size 2 generated by a Halton sequence.
Unlike uniform random sampling, Halton sequences ensure that datasets are evenly distributed
and not clustered together.
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Figure 4.14: 256 points in [−0.5, 0.5]2 generated with Halton sequences of base 2 and 3.

A dataset is a set of records: we consider its power set, and find dataset pairs by recursively
removing records. This procedure is shown in Figure 4.15.

DP predicate test

Once we have pairs of adjacent datasets, we describe how we test each pair (D1, D2). The
goal is to check that for all possible outputs S of the mechanismM:

P [M (D1) ∈ S ] ≤ eεP [M (D2) ∈ S ] + δ

By repeatedly evaluatingM on each dataset, we estimate the density of these probability
distributions. We then use a simple method to compare these distributions: histograms.

We illustrate this procedure in Figure 4.16a and Figure 4.16b. The upper curves (in orange)
are the upper DP bound, created by multiplying the probability estimate of each bin for dataset
D1 by eε and adding δ. The lower curve (in blue) is the unmodified probability estimate of
D2. In Figure 4.16a, all blue buckets are less than the upper DP bound: that the DP predicate
is not violated. In Figure 4.16b, some buckets exceed this upper bound: the DP predicate is
been violated. For symmetry, we also repeat this check with D1 swapped with D2.
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{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

{}
Figure 4.15: Dataset search graph for a dataset {e1, e2, e3}

It is sufficient to terminate once we find a single pair of datasets which violate the predicate.
However, since the histogram is subject to sampling error, a correctly implemented algorithm
can fail this test with non-zero probability. To address this, we relax our test by using
confidence intervals as bounds [384]. We can also parameterize the tester with a parameter α
that tolerates a percentage of failing buckets per histogram comparison.

Full algorithm

The overall approach is an algorithm that iterates over datasets and performs a DFS on
each of the dataset search graphs, where each edge is a DP predicate test. We present it in
algorithm 1. For simplicity, we abstract away the generation of datasets by including it as
an input parameter here, which can be assumed to be generated by the Halton sequence, as
we described previously. We also do not include the confidence intervals or α parameter
described earlier for dealing with the approximation errors. It is also possible to adaptively
choose a histogram bin width, but we put an input parameter K here. The general idea is a
depth-first search procedure that iterates over edges of the dataset search graph.

Our actual implementation includes all of the above omissions, including an efficient
implementation of the search procedure that caches samples of datasets already generated.

With the above procedure, we were able to detect that an algorithm was implemented
incorrectly, violating DP. When we first implemented ANON_AVG, we used the Algorithm 2.3
from [252]: we used our ANON_SUM implementation to compute the noisy sum and then
divided it by the un-noised count. Our first version of ANON_SUM used a Laplace distribution
with scale |U−L|

ε , where U and L are the upper and lower clamping bounds, which is the
correct bound when used as a component of ANON_AVG. However, this was not correct for
noisy sum in the case when adjacent datasets differ by the presence of a row. We updated the
scale to max(|U |,|L|)

ε , as maximum change in this case is the largest magnitude. This change
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Input: A random mechanismM, privacy parameters (ε, δ), datasets D, number of
samples N, number of histogram buckets K

Output: Decision on whether we found a differential privacy violation forM
1 foreach Dr ∈ D do
2 S ← {root node Dr} // Initialize search stack
3 while S , ∅ do
4 A← pop(S )
5 S ← S ∪ {succ(A)}
6 foreach B ∈ succ(A) do

// Generate samples

7 XA ← {x
(i)
A ∼ M (A) | i = 1, . . . , N}

8 XB ← {x
(i)
B ∼ M (B) | i = 1, . . . , N}

// Determine histogram buckets

9 Hmin, Hmax ← min(XA ∪ XB), max(XA ∪ XB)

10 h← Hmax−Hmin
K

11 B←
{
Bk = [Hmin + (k − 1) · h, Hmin + k · h]

∣∣∣ k = 1, . . . , K
}

12 foreach Bk ∈ B do
// Check DP condition using approx. densities over Bk

13 if
∣∣∣∣∣{i

∣∣∣∣ x(i)A ∈ Bk

}∣∣∣∣∣ > eε ·
∣∣∣∣∣{i

∣∣∣∣ x(i)B ∈ Bk

}∣∣∣∣∣+ δ then

14 returnM is likely not differentially private
15 end
16 end
17 end
18 end
19 end
20 return No likely violation has been found

Algorithm 1: DP Stochastic Test
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Figure 4.16: Histogram examples for DP testing, given one pair of datasets
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Figure 4.17: Example histogram comparison for Algorithm 2.3 from [252] with incorrect noise.

created a regression in DP guarantee for ANON_AVG, which was detected by the stochastic
tester.

Figure 4.17 shows a pair of datasets where the stochastic tester detected a violation of the
DP predicate. We can clearly see that several buckets violate the predicate. Once the stochastic
tester alerted us to the error we quickly modified ANON_AVG to use the correct sensitivity2.

This simple approach can be extended in multiple ways. First, rather than only using
randomly-generated databases as input to the stochastic tester, we can also add manual test
cases, which we expect to be “edge cases”, like with extreme record values or empty databases.
Second, the differential privacy test presented above can be improved using the approach

2 In a dramatic turn of events, Alex Kulesza later found that Algorithm 2.3 from [252] is not, in fact, differentially private,
even with this sensitivity fix. Consider a database D1 with a single record 0, and D2 with two values 0 and 1. Use
[0, 1] as a clamping range. On input D1, the density of the output is ε

2 e−ε; while on input D2, it is εe−ε. Thus, the ratio
between the two is 2, independently of ε: this is incorrect for values of ε lower than ln 2.
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presented in [167], which also provides formal bounds on the probability of errors. Third,
differential privacy is not the only property that can be experimentally tested in a similar
fashion: we can also test that the noise distribution corresponds to the one we expect, by
writing a clean-room implementation of each noise distribution, and comparing both via
closeness tests [103].

4.3 further improvements and open questions

In the previous section, we presented a generic system to answer SQL queries with user-
level differential privacy. This system is remarkably simple: it simply analyzes what are the
possible ways in which a typical SQL query can break differential privacy, and proposes
simple building blocks to overcome these obstacles. Importantly, it solves most use cases we
see in practice: counts and sums are enough to cover the vast majority of aggregation queries
that analysts and engineers typically need to run on sensitive data. For these typical use
cases, our simple system performs well, scales to arbitrary data size, and can be implemented
and tested in a robust, production-ready fashion. We hope that this simplicity, and the open-
source publication of the implementation, will encourage further research and engineering
contributions in this direction, and increase the adoption of differential privacy.

In this section, we list possible improvements and extensions to our framework. We raise
many questions and provide only a few answers, most of which are partial: the road to build a
general-purpose, usable, scalable, and robust differentially private query engine is long and
many aspects of this problem are still largely unexplored.

First, in Section 4.3.1, we discuss how to fit other kinds of aggregations within our frame-
work. For some of them, this task is not trivial, and requires to make the computation model
more generic, which presents interesting design challenges. Further, some of these primi-
tives are simply not well-studied in the existing literature, especially under strict scalability
requirements, and under the assumption that each user can contribute multiple data points.

Second, in Section 4.3.2, we come back to the problem of partition selection, introduced
in Section 4.2.2.2 and solved using Laplace noise and thresholding in Section 4.2.3.6. We
introduce an optimal partition selection primitive in the common special case where each user
contributes to a single partition only, and we discuss its extension to other cases.

Third, in Section 4.3.3, we discuss other possible utility and usability improvements: we
present Privacy on Beam, an open-source implementation of the framework described in
Section 4.2 making slightly different design trade-offs, and we explain how Gaussian noise
can be used to boost utility when a single user can contribute to many partitions.

Fourth, in Section 4.3.4, we focus on operational questions that arise when rolling out
differential privacy tooling in practice, and discuss policy topics such as parameter choice or
privacy budget tracking.

Finally, in Section 4.3.5, we take a step back and discuss other possible directions for future
research on differentially private query engines.
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4.3.1 Beyond counts and sums

Differentially private counts and sums are enough to solve a large class of use cases requiring
anonymized data aggregation. However, analysts sometimes need more complex aggregations,
and some of them raise interesting questions. These questions fall into two categories: how
to fit these aggregations in the two-step aggregation model of our framework (per-user
aggregation first, cross-user aggregation second) in a usable fashion, and how to implement
the related primitives in a scalable fashion.

4.3.1.1 Average

Averages are a first simple example. At first glance, they seem to be nothing more than a
sum divided by a count. However, to compute them this way, the user would need to specify
three parameters: a lower and upper bound for the sum, and an upper bound of the amount of
contributions. Thus, they would need to know not only the range of typical values, but also
the number of values that each user typically contributes. This is a lot to ask of an analyst who
simply wants to know the average of a column. We could use automatic bounds determination
for both operations, but the privacy budget cost would then be particularly high.

To compute averages, an alternative option is to first compute a non-private per-user
average, and then to average the results across all users in a private way. This changes the
semantics of the operation: we are now computing an average of averages, instead of an
average of all values. If there is a correlation between the distribution of values and the
number of contributions (for example, each user contributes either few low values, or many
large values), this might introduce bias. This change of semantics might seem shocking at
first glance, but note that this is not limited to averages: clamping, or contribution bounding,
also change the semantics of a query.

In practice, averaging averages does not create significant quality issues. Thus, in scenarios
where usability is most important, like the SQL implementation of our framework, we use
this method. For implementations of the framework that tend to be used by engineers with
more knowledge about their data and with the ability to run exploratory analyses, we opt for
the mechanism that performs a global sum and divides it by a global count.

Note that in that case, the output of the per-user aggregation is different than the overall
result. Each per-user aggregation must return a partial sum and a partial count, while the cross-
user aggregation will only return an average value. Thus, we have to modify our framework
to remove the simplifying assumption that the per-user aggregation is simply the non-private
version of the cross-user aggregation.

4.3.1.2 Variance

The variance operation has the same basic problem as the average operation, although the
right decision is even more clear-cut: computing a per-user variance, and taking the variance
of the result, is obviously not a valid way to compute the total variance between all values. In
fact, there is no obvious way to compute a per-user partial aggregation that would allow to
compute the variance of values. The only option is to preserve the original values, and for the
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per-user “aggregation” step to be only a sampling step, that selects up to a fixed number of
values associated to each user. This underscores the importance of extending our framework
to make sure that the per-user aggregation step can be arbitrarily different from the cross-user
DP aggregation.

4.3.1.3 Quantiles

Quantiles present interesting challenges. First, they raise the same question as averages: is it
appropriate to use the non-private version of the aggregation as a per-user aggregation step?
For some values of quantiles, the answer is clearly positive: for example, to compute the
minimum value of a dataset, we can take the per-user minimum, and run the differentially
private minimum on this set. This limits the contribution per user to 1, which is good for
utility, and does not change the semantics of the aggregation.

However, the situation is different for non-extremum quantiles. For medians, taking the
per-user median value and computing the median of those can introduce the same kind of bias
as for averages. Compute near-extremum quantile values (like the 1st and 99th percentile)
per-user is also highly non trivial if each user only contributes a handful of values. Thus, like
for averages, it might be a good idea to simply sample a fixed number of records as a per-user
“aggregation” step; although deciding when to make this choice is not obvious.

Second, privately computing quantiles in a scalable way does not seem to be a solved
problem. Most common options implicitly assume that all values can fit in memory, which is
unsuited to large-scale datasets and massively parallel computation frameworks. This is the
case for Bayesian binary search [44, 215], for smooth sensitivity [303], and for the exponential
mechanism [127]. Existing methods have been proposed in the literature for the non-private
case, like KLL [214], but those do not provide privacy guarantees, and naively adding noise
to their result does not provide good utility, since their global sensitivity is unbounded. A
naive option is to randomly sample values when there are too many values to fit them all in
memory, but this option likely provides very suboptimal accuracy.

Third, all the methods that we could find in the literature on differentially private quantiles
also implicitly assume that each user contributes at most one value. They can be adapted to
the case where each user contributes multiple values by bounding the total number of values
contributed by each user, and using composition theorems, but there is no reason why this
naive strategy would provide optimal or even good utility.

Finally, many practical use cases for quantiles actually require to compute multiple quantiles
for the same series of values. For example, it is common to compute latency at the 50th, 95th
and 99th percentile [236]. When naively using the private methods mentioned above, each
such percentile must be computed on a separate privacy budget, which is likely far from
optimal. We leave it to future work to improve the state-of-the-art of differentially private
quantiles.

4.3.1.4 Counting distinct values

Counting distinct values corresponds to the following operation.

SELECT
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website,

COUNT(DISTINCT browser_agent)
FROM access_logs
GROUP BY website

Listing 4.10: Count distinct operation

This is easy to do in a scalable way if we want to count unique user identifiers, but if
we want to count distinct values (here, browser agents), it presents an interesting scalability
challenge. If the total number of distinct values is small enough to keep all of them in memory,
the problem is trivial: simply add Laplace noise to the exact count, scaled by the maximum
number of contributions for any single user. However, if linear memory usage is not an option
because of scalability requirements, we need a smarter approach.

Many non-private sketching algorithms have been proposed for this problem, and a number
of them are listed in in Section 3.3.1.2. How to make their output differentially private? Note
that this is a fundamentally different problem than the one tackled in Section 3.3: we do not
want to protect the sketches themselves, but only their output. A noisy variant of Bloom
filters was proposed for a related problem in [9], and in [77], authors show that LogLog [120]
achieves differential privacy “for free” if we assume the hashes used in the algorithm are
computed after adding a random salt to the input values. This method can serve as a first
approach to implement this important primitive.

In the generic case where each user contributes multiple values to the initial dataset, another
natural problem emerges: how to choose the values that each user contributes in an optimal
way? For example, assume each user contributes two values: one fixed value a which is the
same across all users, and a value bi that is different for each user. If the contribution bound
is fixed to 1, choosing a value at random between a and bi for each user is very suboptimal:
we should, instead, try to pick rare values to increment the total count. This raises a problem
similar to the one tackled in [179]: the choice for each user should depend on the choice for
other users, but this obviously makes it trickier to calculate sensitivity. We are not aware of
any research on this specific point; we leave this as an open research question.

4.3.2 Partition selection

Recall the running example of Section 4.2.2.

SELECT
browser_agent ,

COUNT(*) AS visits
FROM access_logs
GROUP BY browser_agent

Listing 4.11: Simple histogram query

One of the pitfalls of making such a query differentially private, identified in Section 4.2.2.2,
is to select which partitions (here, browser agents) will be present in the output. In Sec-
tion 4.2.2.2 and Section 4.2.3.6, we reused an insight from [230], and used Laplace-based
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thresholding to avoid this pitfall: we essentially count unique users associated with each
partition, add Laplace noise to each count, and keep only the partitions whose counts are
above a fixed threshold. The scale of the noise and the threshold value determine ε and δ.

In this section, we explore possible improvements to this partition selection method. We
start by discussing prior work in more detail (Section 4.3.2.1) and introducing definitions
(Section 4.3.2.2). Then, we present a partition selection mechanism for the case where each
user contributes to one partition, prove its optimality (Section 4.3.2.3), and experimentally
compare it to existing methods (Section 4.3.2.4). We then discuss possible extensions to cases
where each user contributes to multiple partitions as well as implementation considerations
(Section 4.3.2.5).

4.3.2.1 Prior work and contributions

Even though Laplace thresholding was introduced in 2009 in [230], the specific primitive
of partition selection did not much attention until [179], where the authors call the generic
problem differentially private set union. Each user is associated with one or several partitions,
and the goal is to release as many partitions as possible while making sure that the output is
differentially private.

In [179], the main use case is word and n-gram discovery in Natural Language Processing:
data used in training models must not leak private information about individuals. In this
context, each user potentially contributes to many elements; the sensitivity of the mechanism
can be high. The authors propose two strategies applicable in this context. First, they use
a weighted histogram so that if a user contributes to fewer elements than the maximum
sensitivity, these elements can add more weight to the histogram count. Second, they introduce
policies that determine which elements to add to the histogram depending on which histogram
counts are already above the threshold. These strategies obtain significant utility improvements
over the simple Laplace-based strategy.

In this work, in contrast to [179], we focus on the low-sensitivity use case: each user
contributes to exactly one partition. This different setting is common in data analysis: when
the GROUP BY operation partitions the set of users in distinct partitions, each user contributes
exactly one element to the set union. Choosing the contributions of each user is therefore not
relevant; the only question is to optimize the probability of releasing each element in the final
result. For this specific problem, we introduce an optimal approach, which maximizes this
probability.

4.3.2.2 Definitions

Throughout most of this work, we will assume that each user contributes to only one partition;
and the goal is to release as many partitions as possible. In that case, each partition can be
considered independently, so the problem is simple to model. Each partition has a certain
number of users associated with it, and the only question is: with which probability do we
release this partition? Thus, a strategy for partition selection is simply a function associating
the number of users in a partition with the probability of keeping the partition.
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Definition 82 (Partition selection primitive). A partition selection primitive is a function
π : N→ [0, 1] such that π(0) = 0. The corresponding partition selection strategy ρπ counts
the number n of users in each partition, and releases this partition with probability π(n).

Formally, we say that a partition selection primitive is (ε, δ)-differentially private if the
corresponding partition selection strategy ρπ : N→

{
drop, keep

}
, defined by:

ρπ(n) =

 drop with probability 1 − π(n)

keep with probability π(n)

is (ε, δ)-differentially private.

Note that partitions associated with no users are not present at all in the input data, so the
probability of releasing them must be 0: the definition requires π(0) = 0.

4.3.2.3 Main result

Let us define an (ε, δ)-DP partition selection primitive πopt and prove that the corresponding
partition selection strategy is optimal. In this context, optimal means that it maximizes the
probability of releasing a partition with n users, for all n.

Definition 83 (Optimal partition selection primitive). A partition selection primitive πopt is
optimal for (ε, δ)-DP if it is (ε, δ)-DP, and if for all (ε, δ)-DP partition selection primitives π
and all n ∈N:

π(n) ≤ πopt (n) .

We introduce our main result, then we prove it in two steps: we first prove that the optimal
partition selection primitive can be obtained recursively, then derive the closed-form formula
of our main result from the recurrence relation.

Theorem 13 (General solution for πopt). Let ε > 0 and δ ∈ (0, 1). Defining:

n1 = 1 +
⌊

1
ε

ln
(

eε + 2δ − 1
(eε + 1)δ

)⌋
,

n2 = n1 +

⌊
1
ε

ln
(
1 +

eε − 1
δ

(1 − πopt (n1))

)⌋
,

and m = n − n1, the partition selection primitive πopt defined by:

πopt (n) =


enε−1
eε−1 · δ if n ≤ n1

(1 − e−mε)
(
1 + δ

eε−1

)
+ e−mεπopt (n1) if n > n1 and n ≤ n2

1 otherwise

is optimal for (ε, δ)-DP.

These formulas assume ε > 0 and δ > 0. We also cover the special cases where ε = 0 or
δ = 0.
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Theorem 14 (Special cases for πopt).

1. If δ = 0, partition selection is impossible: the optimal partition selection primitive πopt
for (ε, 0)-DP is defined by πopt (n) = 0 for all n.

2. If ε = 0, the optimal partition selection primitive πopt for (0, δ)-DP is defined by
πopt (n) = min (1, nδ) for all n.

The rest of this section is a proof of Theorem 13.

Recursive construction

How do we construct a partition selection primitive π so that the partition is output with the
highest possible probability under the constraint that π is (ε, δ)-DP? Using the definition of
differential privacy, the following inequalities must hold for all n ∈N.

π(n + 1) ≤ eεπ(n) + δ (4.1)

π(n) ≤ eεπ(n + 1) + δ (4.2)

(1 − π(n + 1)) ≤ eε(1 − π(n)) + δ (4.3)

(1 − π(n)) ≤ eε(1 − π(n + 1)) + δ. (4.4)

These inequalities are not only necessary, but also sufficient for π to be DP. Thus, the
optimal partition selection primitive can be constructed by recurrence, maximizing each value
while still satisfying the inequalities above. As we will show, only inequalities (4.1) and (4.4)
above need be included in the recurrence relationship. The latter can be rearranged as:

πopt (n + 1) ≤ 1 − e−ε(1 − πopt (n) − δ)

which leads to the following recursive formulation for πopt.

Lemma 13 (Recursive solution for πopt). Given δ ∈ [0, 1] and ε ≥ 0, πopt satisfies the
following recurrence relationship: πopt (0) = 0, and for all n > 0:

πopt (n) = min (eεπopt (n − 1) + δ, 1 − e−ε(1 − πopt (n − 1) − δ), 1) (4.5)

Proof. Let π0 be defined by recurrence as above; we will prove that π0 = πopt.
First, let us show that π0 is monotonic. Fix n ∈N. It suffices to show for each argument of

the min function in (4.5) is larger than π0 (n).
First argument: since ε ≥ 0 implies eε ≥ 1 and δ ≥ 0, we have eεπ0 (n) + δ ≥ π0 (n).
Second argument: we have

1 − e−ε(1 − π0 (n) − δ) = 1 − e−ε(1 − π0 (n)) + e−εδ

≥ 1 − (1 − π0 (n))

= π0 (n)

using that 1 − π0 (n) ≥ 0 since π0 (n) ≤ 1 by (4.5).
Third argument: this is immediate given (4.5) and the fact that π0 (0) = 0.
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It follows that π0 (n + 1) ≥ π0 (n).
Because π0 is monotonic, it immediately satisfies inequalities (4.2) and (4.3), and inequali-

ties (4.1) and (4.4) are satisfied by definition.
Since π0 satisfies all four inequalities above, it is (ε, δ)-DP. Its optimality follows imme-

diately by recurrence: for each n + 1, if π(n + 1) > πopt (n + 1), it cannot be (ε, δ)-DP, as
one of the inequalities above is not satisfied: π0 is the fastest-growing DP partition selection
strategy, and therefore equal to πopt. �

The special cases for πopt in Theorem 14 can be immediately derived from Lemma 13: the
rest of this section focuses on proving the general form in Theorem 13.

Derivation of the closed-form solution

Let us now show that the closed-form solution of Theorem 13 can be derived from the
recursive solution in Lemma 13. First, we show that there is a crossover point n1, below
which only the first term of the recurrence relation matters, and after which only the second
term matters (until πopt (n) reaches 1).

Lemma 14. Assume ε > 0 and δ > 0. There are crossover points n1, n2 ∈ N such that
0 < n1 ≤ n2 and:

πopt (n) =



0 if n = 0

πopt (n − 1) eε + δ if n > 0 and n ≤ n1

1 − e−ε (1 − πopt (n − 1) − δ) if n > n1 and n ≤ n2

1 otherwise.

(4.6)

Proof. We consider the arguments in the min statement in (4.5), substituting x for πopt (n):

α1(x) = eεx + δ

α2(x) = 1 − e−ε(1 − x − δ)

α3(x) = 1

This substitution allows us to work directly in the space of probabilities instead of restricting
ourselves to the sequence (πopt (n))

∞

n=0. Taking the first derivative of these functions yields:

α′1(x) = eε

α′2(x) = e−ε

α′3(x) = 0

Since the derivative of α1(x) − α2(x) is eε − e−ε > 0, there exists at most one crossover point
x1 such that α1(x) < α2(x) for all x < x1, α2(x1) = α1(x1), and α1(x) > α2(x) for all
x > x1. Setting α1(x) = α2(x) and solving for x yields:

eεx + δ = 1 − e−ε(1 − x − δ)
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which leads to:
eεx − e−εx = 1 − δ − e−ε(1 − x − δ)

and finally:

x1 = (1 − δ) ·
1 − e−ε

eε − e−ε
.

Since the derivative of α2(x) − α3(x) is e−ε > 0, there exists at most one crossover point x2
such that α2(x) < α3(x) for all x < x2, α2(x2) = α3(x2), and α2(x) > α3(x) for all x > x2.
Setting α2(x) = α3(x) and solving for x yields:

x2 = 1 − δ.

From the formulas for x1 and x2, it is immediate that 0 < x1 < x2 < 1. As such, the interval
[0, 1] can be divided into three non-empty intervals:

1. On [0, x1], α1(x) is the active argument of min(α1(x),α2(x),α3(x)).

2. On [x1, x2], α2(x) is the active argument of min(α1(x),α2(x),α3(x)).

3. On [x2, 1], α3(x) is the active argument of min(α1(x),α2(x),α3(x)).

The existence of the crossover points is not enough to prove the lemma: we must also show
that these points are reached in a finite number of steps. For all n ≥ 1 such that πopt (n) , 1,
we have:

πopt (n) − πopt (n − 1)

= min (eεπopt (n − 1) + δ, 1 − e−ε (1 − πopt (n − 1) − δ)) − πopt (n − 1)

≥ min (δ, (1 − e−ε) (1 − πopt (n − 1)) + e−εδ)

≥ e−εδ.

Since πopt (n) − πopt (n − 1) is bounded from below by a strictly positive constant e−εδ, the
sequence achieves the maximal probability 1 for finite n. �

This allows us to derive the closed-form solution for n < n1 and for n1 ≤ n < n2 stated in
Theorem 13.

Lemma 15. Assume ε > 0 and δ ≤ 0. If n ≤ n1, then πopt (n) = enε−1
eε−1 · δ. If n1 ≤ n < n2,

then denoting m = n − n1:

πopt (n) = (1 − e−mε)
(
1 +

δ

eε − 1

)
+ e−mεπopt (n1) .

Proof. For n < n1, expanding the recurrence relation yields:

πopt (n) = πopt (n − 1) eε + δ

= δ

n−1∑
k=0

ekε

=
enε − 1
eε − 1

· δ.
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For n1 ≤ n < n2, denoting m = n − n1, expanding the recurrence relation yields:

πopt (n) = 1 − e−ε (1 − πopt (n − 1) − δ)

= (1 − e−ε + δe−ε)
m−1∑
k=0

e−kε + e−mεπopt (n1)

= (1 − e−ε + δe−ε)
1 − e−mε

1 − e−ε
+ e−mεπopt (n1)

= (1 − e−mε)
(
1 +

δ

eε − 1

)
+ e−mεπopt (n1) .

�

We can now find a closed-form solution for n1 and for n2.

Lemma 16. The first crossover point n1 is:

n1 = 1 +
⌊

1
ε

ln
(

eε + 2δ − 1
δ(eε + 1)δ

)⌋
Proof. Using the formula for x1 in the proof of Lemma 14, we see that πopt (n − 1) ≤ x1
whenever:

e(n−1)ε − 1
eε − 1

· δ ≤
1 − δ

eε + 1
.

Rearranging terms, we can rewrite this inequality as:

n ≤ 1 +
1
ε

ln
[
(1 − δ)(eε − 1)
δ(eε + 1)

+ 1
]

= 1 +
1
ε

ln
[
(1 − δ)(eε − 1) + δ(eε + 1)

δ(eε + 1)

]
= 1 +

1
ε

ln
[
eε + 2δ − 1
δ(eε + 1)

]
.

Since n is an integer, the supremum value defining n1 is achieved by taking the floor of the
right-hand side of this inequality, which concludes the proof. �

Lemma 17. The second crossover point n2 is:

n2 = n1 +

⌊
1
ε

ln
(
1 +

eε − 1
δ

(1 − πopt (n1))

)⌋
Proof. We want to find the maximal m such that:

(1 − e−mε)
(
1 +

δ

eε − 1

)
+ e−mεπopt (n1) ≤ 1.

We can rewrite this condition into:

−e−mε
(
1 +

δ

eε − 1
− πopt (n1)

)
≤
−δ

eε − 1
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which leads to:

emε ≤
eε − 1
δ

(
1 +

δ

eε − 1
− πopt (n1)

)
≤ 1 +

eε − 1
δ

(1 − πopt (n1))

and finally:

m ≤
1
ε

ln
(
1 +

eε − 1
δ

(1 − πopt (n1))

)
since m must be an integer, we take the floor of the right-hand side of this inequality to obtain
the result. �

4.3.2.4 Numerical validation

Theorem 13 shows that the optimal partition selection primitive πopt outperforms all other
options. How does it compare with our previous strategy of adding Laplace noise and
thresholding the result, described in Section 4.2.3.6? For simplicity, we recall this strategy in
the simpler case where the sensitivity is one.

Definition 84 (Laplace-based partition selection [230]). We denote by Lap(b) a random
variable sampled from a Laplace distribution of mean 0 and of scale b. The following parti-
tion selection strategy ρLap, called Laplace-based partition selection, is (ε, δ)-differentially
private:

ρLap(n) =

drop if n + Lap
(

1
ε

)
< 1 − ln(2δ)

ε

keep otherwise.

We denote by πLap the corresponding partition selection primitive:

πLap(n) = P
[
ρLap(n) = keep

]
.

As expected, using the optimal partition selection primitive translates to a larger probability
of releasing a partition with the same user. As shown in Figure 4.18, the difference is especially
large in the high-privacy regime.

To better understand the dependency on ε and δ, we also compare the midpoint obtained
for both partition selection strategies ρ: the number n for which the probability of releasing
a partition with n users is 0.5. For Laplace-based partition selection, this n is simply the
threshold. As Figure 4.19 shows, the gains are especially substantial when ε is small, and
not significant for ε > 1. Figure 4.20 shows the dependency on δ: for a fixed ε, there is a
constant interval between the midpoints of both strategies. Thus, the relative gains are larger
for a larger δ, since the midpoint is also smaller.

4.3.2.5 Discussion

The approach presented here is both easy to implement and efficient. The random decision
for a given partition takes a constant time to compute, thanks to the closed-form formula in
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Figure 4.18: Probability of releasing a partition depending on the number of unique users, comparing
Laplace-based partition selection with πopt. On the left, ε = 1 and δ = 10−5; on the
right, ε = 0.1 and δ = 10−10.
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Figure 4.19: Comparison of the mid-point of the partition selection strategy ρ as a function of ε, for
δ = 10−5.
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Figure 4.20: Comparison of the mid-point of the partition selection strategy ρ as a function of δ, for
ε = 0.1 (left) and ε = 1 (right).

Theorem 13. Counting the number of unique users per partition can be done in one pass over
the data and is massively parallelizable. Furthermore, since there is a relatively small value N
such that the probability of keeping a partition with n ≥ N users is 1, the counting process
can be interrupted as soon as a partition reaches N users. This keeps memory usage low (in
O(N)) without requiring approximate count-distinct algorithms like HyperLogLog, for which
a more complex sensitivity analysis would be needed.

Our approach could, in principle, be extended to cases where each user can contribute
to ∆ > 1 partitions. Following the intuition of Lemma 13, we could list a set of recursive
equations defining πopt (n) as a function of πopt(k) for k < n. However, this recursive
formulation is much more complex when ∆ is large, for multiple reasons.

1. With ∆ partitions to consider at the same time, the set of possible outcomes has
cardinality 2∆: keep or drop for each partition.

2. To compute πopt (n) by recurrence, we must consider a large set of possible neighboring
databases: each of the other ∆ − 1 contributions of the user can have anywhere from 0
to n − 1 users. Separately considering all those (∆ − 1)n possibilities quickly becomes
intractable.

3. For each of these possibilities, the probability can be expressed as a polynomial of
degree ∆ in the values of πopt(k), for k < n. Solving these also becomes intractable as
∆ increases.

The above approach might be workable for ∆ = 2 or even ∆ = 3, but the complexity
cost is likely too high to be worth implementing. Furthermore, the recurrence-based proof
of optimality of πopt only holds assuming that each user contributes to exactly ∆ partitions
in the original dataset, so strategies based on selecting which partitions to contribute to, or
weighing the partition of each user if there are fewer than ∆, cannot bring additional benefits.
This case is relatively frequent for ∆ = 1, but rarely happens for larger values of ∆.
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Figure 4.21: Comparison of our method with Laplace-based and Gaussian-based thresholding, with
ε = 1.1 and δ = 10−5. For our method and Laplace-based thresholding, we split the
privacy budget in ∆ equal parts. For Gaussian-based thresholding, we use the formula
in Theorem 16 (Section 4.3.3.2) to add noise, and split δ between noise addition and
thresholding in a way that minimizes the threshold.

Thus, this work leaves two obvious open questions. Is it possible to extend to overcome the
problems described above, and extend our optimal approach to larger sensitivities in a simple
and efficient manner? Furthermore, is it possible to combine this primitive with existing
approaches to differentially private set union [179], like weighted histograms or policy-based
strategies?

In the meantime, can we simply use this primitive for the low-sensitivity use case, and adopt
the approach from [179] when each user can contribute to multiple partitions? If scalability is
a hard requirement, then the answer is not straightforward.

• The policy-based approaches described in [179] require the values of each user one
after the other, and compare them with the histogram previously built from all previous
users. The linearity prevents us from implementing the algorithm in a massively parallel
fashion, and the full histogram must fit in memory. Both are significant obstacles to
scalability; designing alternative algorithms with better scalability properties is left as
an open question.

• However, part of their core insights can still be used. For most values of ε and δ,
Gaussian noise gives better results for ∆ > 3 than naively splitting the budget across
contributions and using our partition selection primitive, as shown in Figure 4.21.
Furthermore, for users who contribute fewer values than ∆, giving these contributions
more weight in the histogram is also possible.
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4.3.3 Improving coverage and utility

In Section 4.2, we presented a framework for computing differentially private statistics, and
we explained how it could be implemented as an extension of a general-purpose SQL engine.
SQL has major usability advantages: the ability to write SQL queries is more common
than the ability to write code in a traditional programming language. The declarative aspect
of SQL also gives us a large freedom to rewrite or optimize the way queries are run, and
semantic analysis is much easier to perform on SQL queries rather than in a Turing-complete
programming language.

However, more powerful programming languages and computation models also come
with a number of distinct advantages. In this section, we quickly present an alternative
implementation of our framework on Apache Beam [17], then we illustrate the possible
benefits that can be gained by such an alternative.

4.3.3.1 Privacy on Beam

SQL is the tool of choice of many data analysts, but many engineers who build pipelines for
large-scale systems opt for more powerful computation frameworks, like Apache Beam [17],
an evolution of prior technologies like MapReduce [95]. Apache Beam is a programming
model in which a client can describe a data processing pipeline, and run it in a massively
parallel fashion without having to implement parallelization themselves, or worry about
technical details like redundancy.

Apache Beam has client libraries written in Java, Go and Python. They allow clients
to specify complex data transformations that would be difficult to express in SQL, either
because of syntactic inelegance (e.g. chaining a large number of search & replace operations
on a string) or lack of language support (e.g. computations that require loops, or calling
an external service). Such examples are very common for complex data pipelines, which
explains the popularity of frameworks like Apache Beam in organizations running large-
scale computational tasks. Furthermore, even though frameworks like Apache Beam have
a declarative aspect (high-level API functions do not provide interface guarantees on their
execution plan), it is often easier to understand which actual computation tasks are executed
when running a pipeline, allowing engineers to finely optimize their performance if needed.

Migration costs are one of the main obstacles to the wide-scale adoption of privacy tech-
nologies: nobody likes to hear that they will need to change their practices and infrastructure
entirely to add a layer of privacy protection, and asking people to do so is usually a losing
battle. This is especially the case if their use case requires using a more powerful framework
than the one we are trying to push them towards. Thus, it is crucial to implement differentially
privacy features in the tools that people are already using. This is a core reason why we
invested in adapting the model we presented in Section 4.2 to frameworks like Apache Beam.
We have done so and published an open-source implementation in Go, available at [320].
In this section, we discuss the advantages of using a more powerful framework, and the
challenges that came with this project.
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Overview

Let us give an example, freely inspired from the public Codelab for Privacy on Beam [83].
The following Apache Beam pipeline, using the Go SDK, assumes that the input data is
a collection of structs of type Visit, which encapsulate information about the visit of
individuals to a given shop.

type Visit struct {
VisitorID string
Day time.Date

EurosSpent int
}

Suppose we want to compute the total euros spent by weekday. A traditional Apache Beam
pipeline would look like the following, assuming that the initial collection is stored in a
variable named input.

func extractDayAndSpend(v Visit) (time.Date, int) {
return v.Day, v.EurosSpent

}

// Initialize the pipeline and its scope

p := beam.NewPipeline()

s := p.Root()

input := readInput(s, "path/to/file")

// Extract day and spend from each Visit

extracted := beam.ParDo(s, extractDayAndSpend , input)

// Sum the spend of each user per day

totalSpent := stats.SumPerKey(s, extracted)

// Determine where to results and execute the pipeline

writeOutput(s, output)

runner.Execute(context.Background(), p)

In the code above, input is a PCollection<Visit>: it is conceptually similar to an
array, except elements are not directly accessible, as a PCollection can represent a very
large collection stored across multiple machines. Then, extracted and totalSpent are
PCollections with (key, value) type <time.Date,int>.

Now, to make this pipeline differentially private, we need to first encapsulate the input into
a PrivatePCollection, which will implicitly track user identifiers.
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// Encapsulate the input

epsilon, delta := 1.0, 1e-10

privacySpec := pbeam.NewPrivacySpect(epsilon, delta)

pcol := pbeam.MakePrivateFromStruct(

s, input, privacySpec , "VisitorID"

)

// Extract day and spend from each Visit

extracted := pbeam.ParDo(s, extractDayAndSpend , pcol)

// Sum the spend of each user per day

sumParams := pbeam.SumParams{

MaxPartitionsContributed: 5,

MinValue: 0,

MaxValue: 100,

}

totalSpent := pbeam.SumPerKey(s, extracted , sumParams)

The MaxPartitionsContributed, MinValue, and MaxValue parameters are conceptu-
ally the same as the κ, L and U introduced in Section 4.2: how many different partitions a
single user can contribute to, and how many euros can they contribute at most in a single
partition.

Interface design

A SQL query is conceptually easy to understand: there is a clear input and output, and it
is relatively easy to check that it satisfies all the constraints of our framework (see Sec-
tion 4.2.3.7). By contrast, an Apache Beam pipeline can have multiple outputs, and contains
transformations with arbitrarily complex logic implemented in a Turing-complete language.
Thus, it is much more difficult to automatically analyze its semantics, or to use rewriting
operations like in SQL. This makes the adaptation of our framework difficult.

We solve this problem by introducing PrivatePCollection. The high-level intuition is
that a PrivatePCollection encapsulates a PCollection, and provides a simple yet pow-
erful interface guarantee: all PCollections that are output from this PrivatePCollection
are differentially private, with the (ε, δ) parameters and user identifier given during initializa-
tion. Not only does this cleanly delineates between the private and the non-private part, but it
also prevents library users from mistakenly copying data that has not been made differentially
private yet.

This interface is also easy to understand for programmers already familiar with Apache
Beam: PrivatePCollection can be used just like PCollection, with additional con-
straints to ensure privacy guarantees. Ideally, an operation is allowed by the interface if and
only if it is compatible with our privacy model.

Behind the scenes, a PrivatePCollection<Visit> is actually a PCollection of type
<userID,Visit>: we keep track of the user identifier associated with each record, and this
user identifier is then used for all privacy-sensitive operations. This plays the same role as
the subquery constraints from Section 4.2.3.2, which also guarantee that each record belongs
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to a single user. Importantly, per-user transformations are still allowed: using pbeam.ParDo,
the equivalent of beam.ParDo, a client can use arbitrary logic to transform a record, includ-
ing filtering records out and creating multiple records from a single one: the outputs of a
pbeam.ParDo transformation on a record owned by a given user ID will also be owned by
the same user ID.

Improved expressibility

The power of a programming language like Go is convenient to clients of the library, as it
enables them to implement complex transformations. It also presents an opportunity for us
to surface more options to the client, so they can fine-tune the behavior of their differential
privacy pipeline and optimize the utility of the data they generate.

We briefly touched on an example in Section 4.3.1.1: in the SQL implementation of our
framework, we compute averages as the average of per-user averages, for usability reasons:
many aggregations have the same two options (lower and upper bound), so having a third
option for averages would be confusing and error-prone, as SQL options are specified as
unnamed arguments to the corresponding function. When using Apache Beam, this problem
is somewhat mitigated: we can use structs with named fields as options for each aggregation,
which makes the code easier to read.

The possibilities offered by a powerful framework like Apache Beam do not stop there. In
the SQL version of our framework, a single value of κ was used within all aggregations of a
query, and the privacy budget was shared equally across aggregations. Again, usability is a
main reason for these technical choices: surfacing too many options is awkward and confusing.
But these choices are not optimal in general, and Apache Beam offers more customization
options so pipeline owners can tweak these values to optimize the utility of their data more
finely.

Finally, in our SQL system, the partition selection primitive was silently added next to
the other aggregations present in a query. By contrast, in Privacy on Beam, generating a list
of partitions can be a standalone primitive, and differentially private aggregations can use a
fixed list of partitions. This is not only useful to manually set the parameters used within this
primitive (exact mechanism, privacy budget, number of partitions each user can contribute to),
but also allows an analyst to manually specify a list of partitions that is not data-dependent,
and skip thresholding altogether.

4.3.3.2 Gaussian noise

The Laplace mechanism is, by far, the most common way of building differentially private
algorithms. Its simplicity makes it particularly easy to reason about and use in a framework
like ours: it provides perfect ε-DP (with δ = 0) for a single metric, it scales linearly with the
sensitivity of each aggregation, and with the maximum number of partitions that a single user
can contribute to. This last fact is a direct application from the basic composition theorem
(Proposition 5, Section 2.1.6.3), which is known not to be tight [133, 213]. In particular,
in [213], authors prove the following composition theorem, which is tight in general.
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Theorem 15 (Theorem 3.3 in [213]). For any ε > 0 and δ ∈ [0, 1], the sequential composition
of k independent (ε, δ)-DP mechanisms satisfies (ε′, δ′)-DP, with:

ε′ = (k − 2i)ε

δ′ = 1 − (1 − δ)k (1 − δi)

for all integers 0 ≤ i ≤
⌊
k/2

⌋
, where:

δi =

∑i−1
l=0 (

k
l)

(
e(k−l)ε − e(k−2i+l)ε

)
(1 + eε)k .

Thus, a natural option for improving utility is to use this result to split the privacy budget
between different aggregations, and between the different contributions of a single user across
partitions in each aggregation. However, this first idea is less attractive than it initially appears.
First, it only brings significant utility gains for large values of k (larger than 20), which limits
its usefulness in practice, as the maximum number of contributions a single user contributes
to is often lower. Second, it is very tricky to implement: one needs to reverse the formula
above to split a given privacy budget, and we very quickly encounter floating-point issues
when doing so.

Note that this tight composition theorem is generic: it holds for any (ε, δ)-DP mechanism.
But in our framework, we really only care about the noise mechanism used in practice. If we
can find a better composition result for Laplace noise, or even change the type of noise we
are using, we might get stronger results and pay a smaller complexity cost.

The Gaussian mechanism turns out to be a strong candidate for such an optimization:
instead of using noise drawn from a Laplace distribution, the Gaussian mechanism adds
Gaussian noise to the result of the original query. We first introduce this mechanism, then
discuss its implementation, and finish by pointing out a few natural open questions.

Definition

The Gaussian mechanism was first proposed in [131], and is a fundamental building block to
differentially private machine learning [1, 39]. Let us first introduce the concepts necessary to
define this mechanism formally.

Definition 85 (Gaussian distribution). The Gaussian distribution of mean µ and of variance
σ2 > 0 is the probability distribution with probability density function:

PDF(x) =
1

σ
√

2π
exp

(
−

1
2

( x − µ
σ

)2
)

.

Using the Gaussian distribution provides benefits besides the utility gains we will discuss
shortly. This distribution plays a central in many scientific theories and practices, so most
data analysts and engineers are already familiar with it and its basic properties. It also has a
much more “predictable” behavior, with tails decaying extremely fast: the probability that a
random variable sampled from a Gaussian distribution of mean 0 and variance σ2 ends up
outside [−5σ, 5σ] is less than one in a million.

Crucially, the Gaussian mechanism depends on a different definition of sensitivity than the
Laplace mechanism: the L2 sensitivity.
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Definition 86 (L2 sensitivity). Let f : D → Rd be a deterministic function. The L2 sensitivity
of f is the smallest number ∆2 such that for all datasets D1 and D2 differing only in one
record: ∥∥∥ f (D1) − f (D2)

∥∥∥
2 ≤ ∆2

where ‖·‖2 is the L2 norm.

We can now introduce a tight analytical result from [28], that quantifies the variance of
the Gaussian mechanism necessary and sufficient to obtain differential privacy based on the
L2-sensitivity of a function.

Theorem 16 (Theorem 8 in [28]). Let f : D → Rd be a deterministic function with finite
L2 sensitivity ∆2. The mechanismM defined byM (D) = f (D) + X, where X is a random
vector of Rd where each coordinate is independently sampled from a Gaussian distribution
of mean 0 and with variance σ2, is (ε, δ)-differentially private iff:

CDFGaussian

(
∆2

2σ
−
εσ

∆2

)
− eεCDFGaussian

(
−

∆2

2σ
−
εσ

∆2

)
≤ δ

where CDFGaussian is the cumulative distribution function of a Gaussian distribution of mean
0 and variance 1.

This formula looks complex, but it is straightforward to implement a binary-search-based
algorithm to find out the lowest possible σ that gives (ε, δ)-DP given the L2 sensitivity ∆2.

Importantly, this formula is invariant if σ and ∆2 are scaled by the same number: the
standard deviation of the noise required for (ε, δ)-DP is a linear function of ∆2. This insight
is the main reason why Gaussian noise is particularly well-suited to contexts where each user
can contribute to many partitions. Indeed, recall that the L2 norm of a vector v = (v1, . . . , vd)
is defined by: √√√ d∑

i=1

v2
i .

Each partition corresponds to a particular dimension of Rd: to compute ∆2, if a user can
contribute to at most k partitions, all but k of these coordinates are going to be 0. If the
maximum change to each partition is s, then ∆2 ≤ s

√
k: the magnitude of the noise scales

with the square root of the number of partitions contributed to. With typical values of (ε, δ),
this makes Gaussian noise a better choice for values of k on the order of 10 or larger.

Implementation

Implementing Gaussian noise properly presents a few challenges. First, naively implementing
this continuous probability distribution on finite computers will also introduce vulnerabilities.
This fact is well-known for Laplace noise [283], but a quick analysis of common random
number generation libraries used in various languages shows that the problem would arise
for Gaussian noise as well if implemented naively: to generate 64-bit floating-point numbers,
Java uses the Marsaglia polar method [269] with only 53 bits of randomness [299, 300],
Python uses the same method [306, 325], Go uses the Ziggurat method, which only uses 32
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bits of randomness 99% of the time [305], etc. Thus, the noisy values will necessarily be
sparse within the space of all possible 64-bit floating-point values, which will create the same
vulnerability than the one described in [283]. It is therefore crucial to focus some attention to
this problem, and come up with robust implementations that are proven to uphold (ε, δ)-DP
guarantees. A handful of solutions have recently been proposed [61, 321, 361], so we assume
that this problem can be solved.

Another challenge is that we do not want to have Gaussian noise as the only option in our
framework: some applications require pure ε-DP, and for low values of k, using Laplace noise
is much better for utility, even for relatively large values of δ. So we need to design a system
in which we can easily switch one type of noise for another. However, Laplace noise and
Gaussian noise use different sensitivities, which makes this non-trivial. With Laplace noise,
we could simply use the standard composition theorem to split the privacy budget across
different partitions, and consider each partition independently. With Gaussian noise however,
we have to have a high-level overview of what each aggregation is doing in each partition, we
cannot simply rely on splitting the value of ε in equal parts.

A natural way to solve this design question is to pass the number of partitions that each
user contributes to as a parameter to each aggregator, and pass the value of ε associated
to the entire aggregation. This way, each aggregator can compute the appropriate value of
the noise. Note that yet another subtlety appears here: Theorem 16 assumes that there is a
uniform bound on the per-partition contribution of individual users, but this is not always the
case in practice, for example if we use approximate bounds determination (Section 4.2.5.1)
per-partition. Luckily, it is relatively straightforward to extend this result in the case where a
user can contribute more in some partitions than others.

Proposition 31 (Generalized analytical Gaussian mechanism). Let f : D → Rd be a
deterministic function such that for all databases D1 and D2 differing in a single record, and
for all i ∈ {1, 2, . . . , d}: ∣∣∣ fi (D1) − fi (D2)

∣∣∣ < ∆i

where fi(D) denotes the i-th coordinate of f (D). The mechanismM defined byM (D) =
f (D) + X, where X is a random vector of Rd where the i-th coordinate is independently
sampled from a Gaussian distribution of mean 0 and with variance σ2

i , is (ε, δ)-differentially
private if for all i:

CDFGaussian

∆i
√

d
2σi

−
εσi

∆i
√

d

 − eεCDFGaussian

−∆i
√

d
2σi

−
εσi

∆i
√

d

 ≤ δ.
Proof. Note that this mechanism is equivalent to computing f (D), dividing each coordinate
fi(D) by ∆i, adding i.i.d. Gaussian noise according to Theorem 16 with ∆2 =

√
d, then

multiplying each coordinate by ∆i.
Once reformulated this way, the result is almost immediate: the first rescaling gives a

mechanism of L2 sensitivity
√

d, the noise addition step guarantees (ε, δ)-differential privacy
according to Theorem 16, and the result follows directly by post-processing. �

Finally, note that the core insight behind using Gaussian noise to improve the utility of
differentially private queries is to consider the release of multiple metrics together, as if they
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were a single query outputting a single output in Rd , instead of considering them separately.
Doing this for a single histogram is natural. An additional possible extension is to make the
same reasoning across entirely different queries. Consider, for example, the following queries.

SELECT
browser_agent ,

COUNT(DISTINCT uid)
FROM access_logs
GROUP BY browser_agent

Listing 4.12: Query counting users, grouped by browser agent

SELECT
hour_of_day ,

COUNT(DISTINCT uid)
FROM access_logs
GROUP BY hour_of_day

Listing 4.13: Query counting users, grouped by hour of day

Both queries have a per-partition sensitivity of 1, and we might choose different cross-
partition contribution bounds for the two queries (say, κ1 and κ2). To make the result of
both queries (ε, δ)-differentially private using Gaussian noise, it is natural to split the budget
between the two. But for the same reason as before, it is more optimal to consider them as
a single query, where each user can contribute to κ1 + κ2 partitions: this allows us to scale
the noise by

√
κ1 + κ2 instead of

√
κ1 +

√
κ2. This leads to a natural trade-off between utility

and design best practices: such optimizations require a simultaneous view of all queries and
the way each of them is implemented. This goes against typical good practices in design,
which require compartmentalization of a system into simple parts.

4.3.4 Operational aspects of anonymization

Technical contributions can only get us so far. Building the right tooling is only half the battle:
rolling out this tooling in practical scenarios presents an array of operational challenges. In
this section, we discuss two such challenges, which we encountered during our efforts to
scale the number of uses of differential privacy in a large tech company.

The first challenge is about anonymization parameters: how to pick values of ε, δ, or even
the unit of privacy in a given setting? The second is about policies: how to best help engineers
understand the guarantees provided by our tooling, and correctly apply differential privacy
principles to their pipelines? In both cases, we only provide partial answers to these difficult
questions, and these answers are largely unscientific. We still hope that they can be a valuable
contribution to a wider conversation between anonymization researchers and practitioners
about these challenges.
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4.3.4.1 Setting anonymization parameters

As we mentioned in Section 2.1, choosing reasonable anonymization parameters for a given
use case has always been a tricky problem. Differential privacy gives a clearer semantic
view to its parameters than past definitions, allowing to express the meaning of ε using
Bayesian inference (Section 2.1.6.2) or hypothesis testing (Section 2.2.6.1). These guarantees
are stronger than past attempts at quantifying the risk of e.g. certain choices of k for k-
anonymity [137], but do not resolve this issue entirely: choosing parameters remains difficult.

The first question around parameters has to be: what are protecting exactly? Do we assume
that each user contributes exactly one record to the dataset, like is generally done in the
literature? Do we protect all contributions from each user, like what we argued in Section 4.2?
But the question is deeper: what unit of privacy should we protect? As the list of variants in
Section 2.2.3 shows, there is nothing universal about this choice.

Protecting individuals might be too weak: for example, if statistics are collected about
families or households, protecting entire households might make more sense. Using device
identifiers, or account identifiers, can be one way of implementing this goal, for example when
everyone in a given household interacts with the same voice assistant device. But protecting
individuals can also be too strong to give reasonable utility: Facebook’s URL dataset [280],
for example, protects single actions taken on the website (e.g. a single user viewing a single
post or sharing a specific URL).

The authors justify this choice by explaining that this allows them to “add significantly
less noise compared with [user-level] differential privacy”. This policy view is not entirely
incompatible with user-level DP: from action-level DP, the authors derive user-level guarantees
that depend on the number of actions each user has taken. They guarantee a given user-level ε
of 0.45 for 99% of users, and derive the parameters for action-level DP accordingly. The 1%
of users who contribute more have a lower degree of protection. This two-step approach is
certainly worth considering, although it is not without risks: in [280], adding inactive users to
the dataset would implicitly make the privacy guarantees worse for everyone, as more users
would end up in the 1% of particularly active users.

In other releases, the privacy unit has a time component: Google’s Community Mobility
Reports [8] and Symptom Search Trends [43] protect users’ contributions in a single day,
while LinkedIn’s Audience Engagements API [332] protects the contributions of each user
during each month. When releasing new data regularly for an unbounded period of time,
having a temporal dimension in the unit of privacy is a requirement; this is sometimes called
“renewing the privacy budget” [358]. Doing so means that no hard limits can be given on the
total privacy loss for each user throughout the unbounded period.

How risky is such a choice, then? The few practical examples of reconstruction attacks [2,
397] (where the attacker tries to find out full original data records) or membership inference
attacks [191, 288, 295, 324, 345] (where the attacker tries to guess whether a data record was
part of the original dataset) do not seem to be immediately applicable to such long-lived DP
publications. Since correlations in the data are often exploited in attacks [324, 397], maybe
the tooling introduced in Chapter 3 can be leveraged to quantify the intuition that some data
releases present a sufficiently low level of risk, even without formal guarantees? Bridging the
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gap between strong formal guarantees, like user-level DP with a small ε, and the feasibility of
practical attacks, remains an open question.

Choosing ε is also a challenging question. We found that the Bayesian interpretation of
differential privacy (Section 2.1.6.2) can be very useful to help people understand the impact
of ε on the level of protection. Concrete examples like randomized response (Section 2.1.6.1)
also help. Perhaps provocatively, we argue that when trying to roll out differential privacy at
scale, looking for a perfect way to determine ε is not a good use of resources; rather, choosing
a default value with a reasonable order of magnitude is a better strategy. Having a fixed
default value as the starting point for discussions saves a lot of time and effort: use cases
whose utility constraints are compatible with the default value can simply use it, limiting the
resources spent on these lower-risk projects. Other uses cases, for which the default value
does not seem to work, typically fall into three categories.

First, the use case might be fundamentally incompatible with any form of anonymization,
e.g. if the data is high-dimensional and cannot be aggregated further. Other options must then
be explored: a slightly larger ε will not help.

Second, the anonymization strategy might need to be optimized. For example, there is no
need to aggregate metrics at a fine-grained temporal granularity (say, every minute), even
though larger granularities (say, hourly or daily metrics) would be enough to solve the original
problem. Then, adapting privacy parameters is not the right answer: modifying the aggregation
process itself is the correct approach. This can also happen when many aggregations seem
to be necessary, but all of them be derived from a smaller subset of aggregations that can
anonymized with the default value of ε.

Third, there are projects for which small variations in ε values make a difference in
feasibility. In this case, finer-grained analyses are needed, and one can add certain conditions
under which the default value can be relaxed, depending on e.g. data sensitivity, exposure, or
retention times. Importantly, a reasonable default value makes these discussions rare: time is
better spent working towards improving tooling, usability, and utility of the vast majority of
use cases, rather than discussing parameters for specific projects.

Finally, many practical use cases use (ε, δ)-DP with a non-zero δ. What are reasonable
values for this parameter? A common suggestion is to use δ = o(1/n), where n is the number
of users in the dataset: a mechanism that releases a uniformly random record is (ε, δ)-DP for
ε = 0 and δ = 1/n, since two datasets that differ in a single record would output this record
only with probability 1/n, and some other record with the exact same probability of 1/n
each. To avoid classifying this obviously bad mechanism as private, δ should be significantly
smaller than 1/n.

This reasoning, however, only applies to this specific mechanism, which would presumably
not be used in practice. Practical (ε, δ)-DP mechanisms do not release a record at random.
For example, the δ from Laplace-based partition selection (Section 4.3.2.4) only applies to
partitions with a single element in them, and the δ from Gaussian noise (Section 4.3.3.2) only
means that the privacy loss can be higher than ε, but not significantly with a large probability.
Further, worse mechanisms (like releasing the entire dataset with probability δ) can also be
(ε, δ)-DP, but not seem reasonable for any non-zero value of δ [274].

Thus, we argue that δ should be chosen differently depending on the exact mechanism.
Vanishingly low values (say, 10−30) are necessary for some rare use cases so a catastrophic
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event is guaranteed to never happen in practice, but larger values make sense in other
scenarios: Facebook’s URL dataset, for example, uses 10−5 for the δ associated with Gaussian
noise [280]. The δ could also conceivably depend on the data itself: for example, for Laplace-
based partition selection, since the risk of the δ only depends on the number of partitions
with a single user, we could first estimate the number of such partitions, and select the δ
accordingly.

This suggests a way to simplify the interface of differentially private tooling, by only
surfacing ε to tool users, and have δ be chosen automatically. A default can be chosen for
some algorithms, while for others, more information could be asked of the analyst (e.g. an
order of magnitude of the number of partitions with a single user), or determined automatically
in a data-dependent way, possibly using a small fraction of the ε budget.

4.3.4.2 Attack models and policies

Rolling out strong anonymization practices to a large number of use cases takes more than
building tooling and picking reasonable parameter values. It is also essential to provide
education and operational guidance to users of this tooling: even when the interface is
simplified as much as possible, differential privacy tooling is still easy to apply incorrectly.
In this section, we focus on a particular use case: long-lived anonymization pipelines, in the
trusted curator model.

Note that this scenario is different from what is assumed in much of the DP literature,
where an analyst is given differentially private query access to a private database. Relying
solely on DP for this last use case presents immense challenges: such a system must track
privacy budget and rate-limit queries, possibly split the budget across analysts, handle of
query errors in a way that does not reveal information but still allows well-meaning analysts to
debug queries, or prevent side-channel attacks [16, 181]. LinkedIn’s Audience Engagements
API [332] is perhaps the only public system actually operating under this model; it uses very
large privacy budgets and a fairly restricted class of allowed queries.

Instead, we focus on a scenario in which analysts have some level of access to the original,
raw data (presumably, with a number of security measures in place) and are trying to publish
or share some anonymized statistics over this data. This is the model used in data releases
such as the 2020 US Census [3] or Facebook’s URL dataset [280]. In addition, we assume
that this release is long-lived: the raw dataset grows over time, and new data is regularly
published; this is the case for e.g. Google’s Community Mobility Reports [8] or Symptom
Search Trends dataset [43].

In this scenario, the people running differentially private algorithms write one or several
non-adversarial queries, make sure that they provide differential privacy guarantees with a
fixed privacy budget, and release the output of those queries. Mistakes can still happen: for
example, floating-point attacks from [283] can cause unexpected privacy loss even without
ill intentions from the person running the tool. Perhaps more importantly, honest mistakes
can also weaken or break privacy guarantees: users must be supported with education and
operational guidance to make sure they understand how to use the tooling correctly.

Let us take a simple example. If a user repetitively runs a differentially private pipeline, and
no budget tracking mechanism is implemented across runs, the total privacy loss is unbounded,
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and so differential privacy no longer provides any formal guarantee. Preventing even simple
mistakes like these from happening is more complicated than it appears. Tracking privacy
budget in the tooling itself, and setting a cap at how much one can query the data, causes
significant usability issues for legitimate users. Analysts trying to define which anonymization
strategy to use for a specific data release often need a lot of experimentation, incompatible
with such hard limits.

Instead, analysts must understand the concept of a privacy budget: the collection of many
individual outputs of anonymization pipelines is “less anonymized” than each in isolation.
The data we publish cannot be easily recomputed and re-published: otherwise, the initial
privacy budget computations will need to be adjusted. This is far from natural to non-experts.
No other privacy or security property works this way: the union of encrypted data is still
encrypted, adding data to an access-controlled directory does not change its access level, etc.

This underscores the need for policies that specifically address data generated for experi-
mental purposes. Although such data might technically qualify as anonymized, good practices
should still be followed, such as limiting access controls lists to those who need access and
setting short retention periods.

This aspect also has important implications on planning, testing, validation, and anomaly
detection practices: finding out before publication that some data is erroneous is crucial, and
since manual validation does not scale, this requires significant investment into automated
testing. Further, it is also a good practice to plan for extra privacy budget in case something
does need to be recomputed: technical changes, like underlying inference algorithms being
improved over time, can unexpectedly impact the utility of the published metrics, and testing
is always imperfect. Techniques like scaling factors [8] can help reduce the privacy cost of
such events, but not avoid it entirely.

Finally, the need to experiment and to validate the output data also requires a somewhat
relaxed view of what goes in the privacy budget. The very idea of doing experiments on the
raw data to develop a final anonymization strategy might sound shocking to theorists! With a
extremely principled approach to differential privacy, every decision we make based on the
data will influence what eventually gets published (and when!), and should be counted as part
of the privacy budget. So if multiple anonymization strategies are compared, and one ends up
being chosen, all of them should count towards the privacy budget, or the choice itself should
be done in a differentially private manner. Similarly, since the result of automated testing ends
up being visible to a potential attacker (who could notice if data is held back), testing should
itself be differentially private, and count towards the budget.

We argue that such a view is entirely incompatible with practical requirements. Nobody
will agree to publishing noisy data without first making sure that the result is usable, which
typically requires many rounds of trial-and-error. Good testing involves not relying on any
single piece of infrastructure or logic to validate the data: testing the accuracy of differentially
private data by using noisy data, when raw data is available, is nonsensical to data analysts
who require strong guarantees on data quality.

Simply not counting this towards the privacy budget feels somewhat uncomfortable. As
DP mechanisms get more and more complex to optimize privacy/accuracy trade-offs, they
also get more hyperparameters, which can be fine-tuned to maximize the mechanism utility
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on certain data. Running a very large number of simulations to find the best value for these
parameters seems unwise: the hyperparameter values themselves might leak private data. . .

One compromise is to count automatic tuning of parameters towards privacy budget
calculations, while manual experimentation should not. For example, the data-dependent
method for choosing δ introduced at the end of Section 4.3.4.1 would not be counted towards
the total privacy budget if the user manually provides an order of magnitude of the number
of small partitions in the data, but would consume some ε if this determination is done
automatically (and, presumably, more precisely).

In the case of testing, this criterion does not exactly work: automated testing is necessary
for long-lived anonymization pipelines, and as we mentioned before, cannot realistically be
done in a DP manner. How to avoid inadvertent information leakage? One mitigation strategy
is to ensure that the effects of testing are coarse enough to not reveal significant insights. For
example, publishing all metrics that pass some quality tests and holding back others seems
unwise. However, having some global tests and preventing the publication of all metrics when
those tests fail is, intuitively, very unlikely to cause any privacy issue.

These considerations must be implemented in education and guidance. This requires
significant investment: one cannot simply build the right tooling and consider the problem
solved. This should not be surprising: in any technological system providing security or
privacy properties, honest mistakes are much more likely to happen than ill-intentioned
attacks, and relying on technology alone often fails to provide the desired outcomes.

4.3.5 Other possible research directions

The discussion throughout Section 4.3 makes it obvious that we are only at the very beginning
of the path towards building usable, general-purpose, and robust differential privacy tooling
and infrastructure. We introduced many open problems, most of which were about adding
additional features, or improving the utility of specific primitives. But this work also suggests
a number of larger open questions and possible research directions.

For example, on the utility side, it might be possible to compensate the data loss due
to contribution bounding and thresholding: we are dropping records according to a simple
probability distribution, so it might be feasible to automatically correct for this sampling and
rescale the results in a private way to limit the bias introduced. Optimizing the algorithms
used for specific sets of queries, or caching some results to allow people to re-run queries
for free, are also natural options. Results on amplification by sampling might also be used in
query frameworks like ours to obtain better privacy/accuracy trade-offs.

More generally, we believe that future work on DP should consider that realistic data
typically includes multiple contributions from a single user. Taking this into account is not
easy: in particular, one of the main obstacles is that asymptotic results are then likely much
more difficult to derive. If every user can contribute multiple records, what is the distribution
of the number of records per user? Depending on this distribution, different algorithms may
have very different behaviors and privacy/accuracy trade-offs. Comparisons with the state-of-
the-art will necessarily be less straightforward, and will involve more experimental validation.
Considering this question while designing differentially private algorithms is, however, of
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utmost importance: many real-world datasets simply do not satisfy the assumption that the
input dataset only has a single record per user.

This remark about experimental validation underscores the importance of a crucial and
largely unexplored area of differential privacy research: benchmarking. Nowadays, scientific
papers often provide comparisons with prior work on ad hoc datasets or on synthetic data.
The evaluation we presented in Section 4.2.4 is no exception. TPC-H was designed as
a general-purpose performance benchmark for database systems [87]; its queries are not
representative of the type of queries that are typical in situations where applying differential
privacy makes sense. There are a few benchmarks today that focus on differential privacy,
but they only consider specific problems like one- and two-dimensional histograms [189,
190], and they do not consider multiple contributions by the same user. We argue that a
good benchmark for general-purpose differentially private query engines should have several
important characteristics.

• The datasets used must be publicly available.

• The data and the queries run must be representative of real-world use cases for differ-
entially private query engines, including aggregations besides histograms.

• The datasets and queries used must be large enough to mirror practical scalability
requirements.

• The system under test must provide user-level differential privacy, even when a single
user can contribute multiple records.

Building a benchmarking system that satisfies these requirements will not be easy: one
of the challenges is that differential privacy is typically applied on sensitive data, which is
typically not public. Besides the requirements listed above, defining a set of good scoring
metrics is also going to be highly non-trivial. However, we believe that such a benchmark
could encourage valuable research, making it a promising and worthwhile research direction.

We made a number of statements about improving usability, but we have been defining
this concept very loosely, and our remarks where purely based on practical experience with
helping engineers and data analysts use differential privacy. This anecdotal evidence, however,
hardly constitutes scientific evidence that one method is better than another from a usability
perspective. To get a better understanding of what helps people use differential privacy in
practice, systematic qualitative and quantitative user research is certainly needed.

Finally, we hope that the discussion on operational challenges can serve as a starting point
for honest and genuine discussions around best operational practices within the community
of anonymization practitioners. However, reaching consensus on these questions will take
more than technical expertise: questions like “how to explain anonymization best practices to
non-experts” cannot be answered by a clever mathematical formula, and a multidisciplinary
approach is needed. Academic work can strengthen our understanding of the link between
parameter choice and attack success, or take an experimental approach to find out which
policies produce the best outcomes, but an open and transparent discussion across the industry
is also needed to define anonymization good practices. Perhaps standard bodies, or open-
source collaborations, could be good places to host such discussions?





5
C O N C L U S I O N

From the ground, we stand. From our ships, we live. By the
stars, we hope.

— Becky Chambers, Records of a Spaceborn Few

Trying to lower the cost of anonymization, in 2020, can sometimes feel like a pointless
academic endeavor. Is data privacy really worth focusing on, when climate change is quickly
making our planet unlivable [362]? Only a global pandemic has seemed able to temporarily
slow down the global warming process [239], while existing plans to tackle this enormous
challenge seem both inefficient and doomed to failure [240]. Not only do we appear to be
unable to mitigate this looming threat, but we also seem woefully unprepared to handle its
consequences. Migration crises will likely intensify over the next few decades, and nations
all over the world are already showing their systematic inability to handle them with any
shred of humanity or kindness [175, 229, 343]. We urgently need to build more just societies,
that acknowledge their white supremacist past, and uphold fundamental human rights for
everyone, including marginalized communities. Instead, world superpowers are quickly
descending into fascism [386], building technological infrastructure that empowers belligerent
authoritarianism [319, 377], and getting away with committing cultural genocide [403].

Fighting off these potentially catastrophic shifts is critical to upholding every value we
hold dear. But preventing our societies from succumbing to apocalyptic threats is only half
the battle: we also need to actively build a fairer, kinder, more sustainable world. Systemic
challenges require systemic solutions: we need to change incentives and structures so that
people and organizations naturally tend towards doing the right thing for all the stakeholders
they impact.

The development of privacy-preserving technologies can play a positive role in pushing
some of those incentives in the right direction. As an example, encrypting Web traffic at
scale is globally beneficial, and efforts that make secure protocols easier to use and deploy
are making it that comparatively harder for organizations to resist calls to migrate to safer
practices. Similarly we envision a world where there are fewer and fewer reasons for sharing
or publishing data in an unsafe, identifiable manner, which puts individuals at risk. Such a
shift would primarily benefit those who, today, pay the highest price when their personal
information is leaked: marginalized groups targeted by online harassment, victims of domestic
abuse, or political dissidents under authoritarian regimes.

Nonetheless, it is worth examining the implicit power dynamics at play in differential
privacy, especially in its central form discussed throughout this thesis, as almost all the
techniques we introduced, developed, or improved upon, assume that a central organization
collects and stores raw data from individuals. Once all this personal and sensitive information
has been collected, this central organization the one responsible for anonymizing it and then
sharing or publishing it in a safe manner. This is a vertical model of differential privacy: it
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presupposes a high level of trust that the individual must put in the central organization, to
take great care of their data and not abuse it. This trust might be completely misguided, as
many recent high-profile data leaks or questionable uses of data tend to suggest. Further, this
relationship is often not as consensual as it first seems: for instance, can you really choose
not to participate to a service that all your friends use to organize social events? Finally, even
organizations with good intent are subject to applicable laws and regulations, some of which
can compel them to share the data from their users with authoritarian governments.

This model will likely never disappear entirely: retailers need to know who their customers
are and where to ship their packages, hospitals need to have information about the patients they
treat, government organizations like the US Census have a mandate to collect demographic
data from their residents and use it to make decisions that impact their democratic system.
Further, as we mentioned in the introduction of this thesis, and as exemplified by use cases
like the Community Mobility Reports or the Search Trends symptoms dataset, such data
publications can have a significantly positive social impact. Thus, we argue that improving
incentives for such use cases is still worth doing.

However, these implicit power dynamics, which indirectly cause massive systemic prob-
lems, suggest that lowering the cost of central differential privacy is not enough. To minimize
the negative societal impact from data hoarding, we need to incentivize organizations not
to collect sensitive data in the first place. This suggests investing in alternative models, like
local or distributed differential privacy. In these models, a central aggregator can learn useful
information about global trends, but does not have access to the raw data: they cannot abuse
it, leak it inadvertently, or provide it to governments.

Randomized response was a first example of such a system, but a number of very promising
advances have been made in that direction in the past few years. Trusted shufflers or secure
aggregation techniques can provide strong guarantees and high utility with a minimal level of
trust. Just like any other privacy-enhancing technology, making them both useful and usable
will be paramount to their success, and will unlock their positive impact globally.

We predict that rolling out these protocols at scale will raise very similar issues to the
ones discussed in this thesis about central differential privacy: improving usability will be
difficult but paramount, unexpected vulnerabilities will have to be identified and fixed, tricky
operational challenges will appear and will need to be tackled. Collaborations across the
industry, governments, nonprofit organizations and academics will be necessary for such a
project to be successful. It will be difficult, frustrating, tiring, fascinating, and exhilarating—
anything worth doing usually is.
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