Khôlles de Mathématiques - MPSI 3

Semaine 28: Espaces affines

Damien DESFONTAINES - damien.desfontaines@ens.fr

Cours 1 : Une application affine est une isométrie si et seulement si sa partie linéaire est orthogonale : démonstration.

Cours 2: Il existe une unique réflexion qui échange deux points donnés : démonstration.

Cours 3: Il existe une unique similitude envoyant [A, B] sur [A', B']: démonstration.

Cours 4: Classification des isométries en dimension 3.

Exercice 1 (moyen) : Soit f une isométrie telle que $M \to \left\| \overrightarrow{Mf(M)} \right\|$ soit constante. Montrer que f est une translation.

(Démo : On raisonne avec les milieux : pour que $\overrightarrow{Af(A)} = \overrightarrow{Bf(B)}$ pour tout couple (A,B), il faut que $\overrightarrow{Af(A)}f(B)$ soit un parallélogramme. On rend donc I milieu de [A,B] et J milieu de [A,f(B)]. On calcule \overrightarrow{IJ} et $\overrightarrow{Jf(I)}$ par le théorème de Thalès, on utilise l'inégalité triangulaire pour montrer que c'est la même chose et pouf c'est fini.)

Exercice 2 (moyen): Trouver l'ensemble des isométries planes qui laissent invariant un ensemble de quatre points formant un carré.

(Démo : On remarque que cet ensemble est un groupe, et que chaque élément de ce groupe laisse invariant l'isobarycentre O du carré. On bidouille et on trouve huit applications différentes qui conviennent. Pour montrer que ce sont les seules, on prend f une isométrie qui convient, on la compose par une rotation pour envoyer A sur lui-même, et cette composition envoie aussi O sur O. C'est donc soit l'identité soit une réflexion d'axe AB, et c'est un cas qu'on a déjà géré.)

Exercice 3 (sale) : Dans l'espace euclidien orienté \mathbb{R}^3 , soit r la rotation d'angle θ autour de l'axe orienté et dirigé par le vecteur unitaire \overrightarrow{u} . Montrer que :

$$r\left(\overrightarrow{x}\right) = \cos\left(\theta\right) \overrightarrow{x} + \sin\left(\theta\right) \left(\overrightarrow{u} \wedge \overrightarrow{x}\right) + 2\left(\overrightarrow{u} | \overrightarrow{x}\right) \sin^{2}\left(\frac{\theta}{2}\right) \overrightarrow{u}$$

Exercice 4 (difficile): Théorème de Carathéodory. Soit E un espace affine réel de dimension $n, m \in \mathbb{N}$, et $(x_1,...,x_m) \in E^m$. On considère une combinaison convexe des $x_i : x = \sum_{i=1}^n t_i x_i$, où les t_i sont tous positifs et où $\sum_{i=1}^n t_i = 1$. Montrer qu'on peut réécrire cette combinaison convexe de sorte qu'au plus n+1 des t_i soient non nuls.

(Démo : Récurrence sur m. Si $m \leq n+1$, il n'y a rien à montrer. Sinon, on commence par remarquer que les (x_i) sont affinement liés, c'est à dire qu'il existe des (λ_i) tels que $\sum_{i=1}^m \lambda_i x_i = 0$, et tels que $\sum_{i=1}^m \lambda_i = 0$ (ça se voit en remarquant que les $x_i - x_0$ sont linéairement liés). De plus, on peut supposer que les t_i sont tous non nuls (sinon, on applique l'hypothèse de récurrence). Donc, d'après ce qu'on vient de dire, on a pour tout $\alpha : \sum_{i=1}^m (t_i + \alpha \lambda_i) x_i = 0$. Il suffit donc de prendre le plus petit α tel que l'un des $t_i + \alpha \lambda_i$ soit nul, et on se ramène au cas précédent.)

Exercice 5 (vraiment difficile): Soit K une partie convexe fermée bornée non vide d'un espace euclidien réel de dimension finie. Soit Γ un ensemble d'applications affines de E envoyant K dans lui-même et qui commutent deux à deux. Montrer que Γ a un point fixe dans K, c'est à dire qu'il existe $a \in K$ tel que u(a) = a pour tout $u \in \Gamma$.

Note : ça nécessite le théorème de Bolzano-Weierstrass, et le cas "Γ infini" nécessite le théorème de Borel-Lebesgue.

(Démo : commençons par le cas $\Gamma=\{u\}$. On prend $x_0\in K$, et on étudie alors la suite $x_n=\frac{1}{n}\left(x_0+\ldots+u^{n-1}\left(x_0\right)\right)$. Cette suite est à valeurs dans K, il existe une sous-suite qui converge vers un élément a, et comme $u\left(x_n\right)-x_n=\frac{1}{n}\left(u^n\left(x_0\right)-x_0\right)$ tend vers 0, on a $u\left(a\right)-a=0$. Le cas $\Gamma=\{u_1,\ldots,u_r\}$ se traite par récurrence : on étudie l'ensemble K' constitué des points de K laissés fixes par $\{u_1,\ldots,u_{r-1}\}$. K' est non vide par hypothèse de récurrence, fermé (image réciproque de $\{0\}$ par $x\to \sum \|u_i\left(x\right)-x\|$, ou bien on fait une suite, c'est continu, ça marche), et borné. Or, K' est stable par u_r (vérification immédiate, les u_i commutent) : d'après ce qu'on a déjà montré, on sait que u_r a un point fixe dans K', et donc ce point est fixe par Γ (hey, cette démonstration crache du feu). Après, et là t'as des étoiles dans les yeux, pour Γ quelconque, si on note K_u l'ensemble des points fixes par u, on a $\forall (u_1,\ldots,u_r)\in K^r$, $\bigcap_{i=1}^r K_{u_r}\neq\varnothing$, et le théorème de Borel-Lebesgue permet de conclure que $\bigcap_{u\in\Gamma} K_u\neq\varnothing$ vu que les K_u sont des fermés.)

Exercice 6 (plutôt simple): Soit F un sous-espace affine de \mathbb{R}^n . Donner une condition nécessaire et suffisante pour que F engendre \mathbb{R}^n .

(Solution: F doit être E tout entier, ou bien un hyperplan non vectoriel.)

Exercice 7 (difficile - ENS) : Soit E un K-espace vectoriel. Montrer que E est la réunion d'un nombre fini de sous-espaces vectoriels stricts si et seulement si K est fini. Dans le cas "K fini", trouver le nombre minimum de sous-espaces nécessaires.

Exercice 8 (assez facile) : Théorème de Thalès. Énoncer et démontrer le théorème de Thalès pour un espace affine sur un corps (commutatif) quelconque.

Exercice 9 (difficile): Lemme de Radon, théorème de Helly. Montrer que tout ensemble $A = \{a_1, ..., a_{d+2}\} \subset \mathbb{R}^d$ admet une partition en deux parties A_1 et A_2 telles que $\operatorname{Conv}(A_1) \cap \operatorname{Conv}(A_2) \neq \emptyset$ (c'est le lemme de Radon). Puis, si on note $\Delta_i = \operatorname{Conv}(A \setminus \{a_i\})$, montrer que $\bigcap_{i=1}^{d+2} \Delta_i \neq \emptyset$. Enfin, montrer que si $X_1, ..., X_n$ sont des convexes de \mathbb{R}^d , où $n \geq d+1$ et où $\forall I \subset \{1, ..., n\}$, $\operatorname{Card}(I) = d+1 \Rightarrow \bigcap_{i \in I} X_i \neq \emptyset$, alors $\bigcap_{i=1}^n X_i \neq \emptyset$ (c'est le théorème de Helly).

(Démo : Pour le lemme de Radon, on dit que les équations en $\lambda_i \sum_{i=1}^{d+2} \lambda_i a_i = 0$ et $\sum_{i=1}^{d+2} \lambda_i$ ont une solution (vu qu'il y a d+1 équations pour d variables), on sépare cette solution en coefficients négatifs d'un côté et positifs de l'autre, et ça nous donne nos deux ensembles. La deuxième question est très simple, il suffit de voir que i est dans l'une des deux parties A_1 ou A_2 et donc que l'autre partie est inclue dans Δ_i . Pour la dernière question, on étudie d'abord le cas n=d+2: pour chaque j, on prend $a_i \in \left(\bigcap_{i=1}^n X_i\right) \setminus \{X_j\}$, on applique le truc précédent à l'ensemble obtenu, ça fournit un point qui est dans tous les Δ_j , mais par définition, on a $\Delta_j \subset X_j$, donc ça suffit pour conclure. Puis, on fait une récurrence en remplaçant X_{n-1} et X_n par $X_{n-1} \cap X_n$.)